Infinitely many sign-changing solutions for a class of critical elliptic systems with Neumann conditions

被引:1
作者
de Morais Filho, D. C. [1 ]
Faria, L. F. O. [2 ]
Miyagaki, O. H. [2 ]
Pereira, F. R. [2 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58429970 Campina Grande, Paraiba, Brazil
[2] Univ Fed Juiz de Fora, Dept Matemat ICE, BR-36036330 Juiz De Fora, MG, Brazil
关键词
CRITICAL SOBOLEV EXPONENT; POSITIVE SOLUTIONS; ENERGY SOLUTIONS; EQUATIONS; MULTIPLICITY; EXISTENCE;
D O I
10.1017/S0308210512000091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the multiplicity results for a class of critical elliptic systems related to the Brezis-Nirenberg problem with the Neumann boundary condition on a ball. Our approach relies on a minimization argument for an auxiliary problem with a mixed boundary condition and on suitable estimates of the critical level for the system case.
引用
收藏
页码:53 / 69
页数:17
相关论文
共 45 条
[1]   Multiplicity of positive solutions for a class of quasilinear nonhomogeneous Neumann problems [J].
Abreu, EAM ;
do O, JM ;
Medeiros, ES .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1443-1471
[2]  
ADIMURTHI, 1993, T AM MATH SOC, V336, P631
[3]   EXISTENCE AND NONEXISTENCE OF POSITIVE RADIAL SOLUTIONS OF NEUMANN PROBLEMS WITH CRITICAL SOBOLEV EXPONENTS [J].
ADIMURTHI ;
YADAVA, SL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 115 (03) :275-296
[4]   CRITICAL SOBOLEV EXPONENT PROBLEM IN RN(N-GREATER-THAN-OR-EQUAL-TO-4) WITH NEUMANN BOUNDARY-CONDITION [J].
ADIMURTHI ;
YADAVA, SL .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1990, 100 (03) :275-284
[5]  
ADIMURTHI, 1993, J FUNCT ANAL, V113, P318
[6]  
Adimurthi Mancini, 1991, Nonlinear analysis, P9
[7]   Multiplicity of positive solutions for a mixed boundary elliptic system [J].
Alves, Claudianor O. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (01) :19-39
[8]   Nehari manifold and existence of positive solutions to a class of quasilinear problems [J].
Alves, CO ;
El Hamidi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (04) :611-624
[9]   On systems of elliptic equations involving subcritical or critical Sobolev exponents [J].
Alves, CO ;
de Morais, DC ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) :771-787
[10]  
Aubin T., 1982, Monge-Ampere Equations, V252