Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures

被引:75
作者
Nishiguchi, Akihiro [1 ]
Matsusaki, Michiya [1 ]
Asano, Yoshiya [2 ]
Shimoda, Hiroshi [2 ]
Akashi, Mitsuru [1 ]
机构
[1] Osaka Univ, Grad Sch Engn, Dept Appl Chem, Suita, Osaka 5650871, Japan
[2] Hirosaki Univ, Grad Sch Med, Dept Neuroanat Cell Biol & Histol, Hirosaki, Aomori 0368562, Japan
关键词
Artificial tissue engineering; Angiogenesis; Cytokine; ECM (extracellular matrix); Endothelial cell; IN-VITRO; 3-DIMENSIONAL TISSUES; BLOOD-VESSELS; FABRICATION; NETWORKS; CELLS;
D O I
10.1016/j.biomaterials.2014.01.079
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The in vitro fabrication of vascularized tissue is a key challenge in tissue engineering, but little is known about the mechanisms of blood-capillary formation. Here we investigated the mechanisms of in vitro vascularization using precisely-controlled 3D-microenvironments constructed by a sandwich culture using the cell-accumulation technique. 3D-microenvironments controlled at the single layer level showed that sandwich culture between more than 3 fibroblast-layers induced tubule formation. Moreover, the secretion of angiogenic factors increased upon increasing the number of sandwiching layers, which induced highly dense tubular networks. We found that not only angiogenic factors, but also the 3D-microenvironments of the endothelial cells, especially apical side, played crucial roles in tubule formation in vitro. Based on this knowledge, the introduction of blood and lymph capillaries into mesenchymal stem cell (MSC) tissues was accomplished. These findings would be useful for the in vitro vascularization of various types of engineered organs and studies on angiogenesis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4739 / 4748
页数:10
相关论文
共 34 条
[1]   Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises [J].
Armulik, Annika ;
Genove, Guillem ;
Betsholtz, Christer .
DEVELOPMENTAL CELL, 2011, 21 (02) :193-215
[2]   Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering [J].
Asakawa, Nahoko ;
Shimizu, Tatsuya ;
Tsuda, Yukiko ;
Sekiya, Sachiko ;
Sasagawa, Tadashi ;
Yamato, Masayuki ;
Fukai, Fumio ;
Okano, Teruo .
BIOMATERIALS, 2010, 31 (14) :3903-3909
[3]  
Asano Y, ULTRASTRUCTURE BLOOD
[4]   Tumorigenesis and the angiogenic switch [J].
Bergers, G ;
Benjamin, LE .
NATURE REVIEWS CANCER, 2003, 3 (06) :401-410
[5]   Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues [J].
Chiu, Loraine L. Y. ;
Radisic, Milica .
BIOMATERIALS, 2010, 31 (02) :226-241
[6]   Taking cell-matrix adhesions to the third dimension [J].
Cukierman, E ;
Pankov, R ;
Stevens, DR ;
Yamada, KM .
SCIENCE, 2001, 294 (5547) :1708-1712
[7]   Tissue cells feel and respond to the stiffness of their substrate [J].
Discher, DE ;
Janmey, P ;
Wang, YL .
SCIENCE, 2005, 310 (5751) :1139-1143
[8]   Engineering tumors with 3D scaffolds [J].
Fischbach, Claudia ;
Chen, Ruth ;
Matsumoto, Takuya ;
Schmelzle, Tobias ;
Brugge, Joan S. ;
Polverini, Peter J. ;
Mooney, David J. .
NATURE METHODS, 2007, 4 (10) :855-860
[9]   ANGIOGENESIS INVITRO [J].
FOLKMAN, J ;
HAUDENSCHILD, C .
NATURE, 1980, 288 (5791) :551-556
[10]   Assessing the Permeability of Engineered Capillary Networks in a 3D Culture [J].
Grainger, Stephanie J. ;
Putnam, Andrew J. .
PLOS ONE, 2011, 6 (07)