Layer solutions for a class of semilinear elliptic equations involving fractional Laplacians

被引:6
作者
Hu, Yan [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2014年
基金
中国国家自然科学基金;
关键词
fractional Laplacian; layer solutions; existence; local minimizers; DE-GIORGI; CONJECTURE; SPACE;
D O I
10.1186/1687-2770-2014-41
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the nonlinear equation involving the fractional Laplacian: (-Delta)(s)v(x) = b(x)f(v(x)), x is an element of R, where s is an element of (0, 1), b : R -> R is a periodic, positive, even function and -f is the derivative of a double-well potential G. That is, G is an element of C-2,C-gamma (0 < gamma < 1), G(1) = G(-1) < G(tau) for all tau is an element of (-1, 1), G'(-1) = G'(1) = 0. We show the existence of layer solutions of the equation for s >= 1/2 and for some odd nonlinearities by variational methods, which is a bounded solution having the limits +/- 1 at +/-infinity. Asymptotic estimates for layer solutions as vertical bar x vertical bar -> +infinity and the asymptotic behavior of them as s up arrow 1 are also obtained.
引用
收藏
页数:20
相关论文
共 12 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]  
Alama S, 1997, CALC VAR PARTIAL DIF, V5, P359, DOI 10.1007/s005260050071
[3]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732
[4]  
Cabre X, 2011, ARXIV11110796
[5]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[8]   On a conjecture of De Giorgi and some related problems [J].
Ghoussoub, N ;
Gui, C .
MATHEMATISCHE ANNALEN, 1998, 311 (03) :481-491
[9]   On De Giorgi's conjecture in dimensions 4 and 5 [J].
Ghoussoub, N ;
Gui, CF .
ANNALS OF MATHEMATICS, 2003, 157 (01) :313-334
[10]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224