Improved Accuracy of Nonlinear Parameter Estimation with LAV and Interval Arithmetic Methods

被引:0
作者
Munoz, Humberto [1 ,2 ]
Gwee, Nigel [2 ,3 ]
机构
[1] So Univ, Dept Math, Baton Rouge, LA 70813 USA
[2] A&M Coll, Baton Rouge, LA 70813 USA
[3] So Univ, Dept Comp Sci, Baton Rouge, LA 70813 USA
来源
IMETI 2008: INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING AND TECHNOLOGICAL INNOVATION, VOL II, PROCEEDINGS | 2008年
关键词
Global optimization; interval computations; nonsmooth optimization; least absolute values; least squares estimators;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The reliable solution of nonlinear parameter estimation problems is an important computational problem in many areas of science and engineering, including such applications as real time optimization. Its goal is to estimate accurate model parameters that provide the best fit to measured data, despite small-scale noise in the data or occasional large-scale measurement errors (outliers). In general, the estimation techniques are based on some kind of least squares or maximum likelihood criterion, and these require the solution of a nonlinear and nonconvex optimization problem. Classical solution methods for these problems are local methods, and may not be reliable for finding the global optimum, with no guarantee the best model parameters have been found. Interval arithmetic can be used to compute completely and reliably the global optimum for the nonlinear parameter estimation problem. Finally, experimental results will compare the least squares, 12, and the least absolute value 11 estimates using interval arithmetic in a chemical engineering application.
引用
收藏
页码:181 / 186
页数:6
相关论文
共 10 条
  • [1] CAU CY, 2000, FLUID PHASE EQUILIBR, V168, P1
  • [2] Clarke F. H, 1990, CLASSICS APPL MATH, V5
  • [3] A note on hypothesis testing in LAV multiple regression: A small sample comparison
    Dielman, TE
    Rose, EL
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 23 (03) : 381 - 388
  • [4] Gmehling J., 1977, CHEM DATA SERIES, VI
  • [5] Hansen Eldon R., 1992, Global optimization using interval analysis
  • [6] Kearfott R.B., 1996, RIGOROUS GLOBAL SEAR, DOI DOI 10.1007/978-1-4757-2495-0
  • [7] Moore R., 1962, THESIS STANFORD U
  • [8] MUNOZ H, 2007, P 81 LA AC SCI MAR 1
  • [9] MUNOZ H, 2004, RELIABLE COMPUTING, V10
  • [10] Neumaier A., 1990, INTERVAL METHODS SYS