Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours

被引:172
作者
Iliopoulou, E. F. [1 ]
Stefanidis, S. [1 ,2 ]
Kalogiannis, K. [1 ]
Psarras, A. C. [1 ]
Delimitis, A. [1 ]
Triantafyllidis, K. S. [3 ]
Lappas, A. A. [1 ]
机构
[1] CERTH, Chem Proc & Energy Resources Inst, Thessaloniki 57001, Greece
[2] Univ Western Macedonia, Dept Mech Engn, Kozani 50100, Greece
[3] Aristotle Univ Thessaloniki, Dept Chem, Thessaloniki 54124, Greece
关键词
BIO-OIL; FUELS; CONVERSION; XYLENE;
D O I
10.1039/c3gc41575a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The main objective of the present work was the evaluation of commercial ZSM-5 catalysts (diluted with a silica-alumina matrix) in the in situ upgrading of lignocellulosic biomass pyrolysis vapours and the validation of their bench-scale reactor performance in a pilot scale circulating fluidized bed (CFB) pyrolysis reactor. The ZSM-5 based catalysts were tested both fresh and at the equilibrium state, and were further promoted with cobalt (Co, 5% wt%) using conventional wet impregnation techniques. All the tested catalysts had a significant effect on product yields and bio-oil composition, both at bench-scale and pilot scale experiments, producing less bio-oil but of better quality. Incorporation of Co exhibited no additional effect on water or coke production induced by ZSM-5, compared to non-catalytic fast pyrolysis. On the other hand, Co addition significantly increased the formation of CO2 compared to the CO increase which was favored by the use of ZSM-5 alone. These changes in CO2/CO yields are indicative of the different decarbonylation/decarboxylation mechanism that applies for Co3O4 compared to ZSM-5 zeolite, due to the differences in their acidic properties (mainly type of acid sites). Co-promoted ZSM-5 catalysts simultaneously enhanced the production of aromatics and phenols with a more pronounced performance in the pilot-scale experiments resulting in the formation of a three phase bio-oil, rather than the usual two phase catalytic pyrolysis oil (aqueous and organic phases). The third phase produced is even lighter than the aqueous phase and consists mainly of aromatic hydrocarbons and phenolic compounds. Addition of Co in ZSM-5 is thus suggested to strongly enhance aromatization reactions that result in selectivity increase towards aromatics in the bio-oil produced. Possible routes of catalyst deactivation in the pilot plant's continuous operation process have been suggested and are related to pore blocking and masking of acid sites by formed coke (reversible deactivation), partial framework dealumination of the fresh zeolitic catalyst, and accumulative ash deposition on the catalyst that depends on the nature of biomass (content of ash).
引用
收藏
页码:662 / 674
页数:13
相关论文
共 36 条
[11]   Bio-fuels from thermochemical conversion of renewable resources: A review [J].
Goyal, H. B. ;
Seal, Diptendu ;
Saxena, R. C. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (02) :504-517
[12]   Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering [J].
Huber, George W. ;
Iborra, Sara ;
Corma, Avelino .
CHEMICAL REVIEWS, 2006, 106 (09) :4044-4098
[13]   Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite [J].
Iliopoulou, E. F. ;
Stefanidis, S. D. ;
Kalogiannis, K. G. ;
Delimitis, A. ;
Lappas, A. A. ;
Triantafyllidis, K. S. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 127 :281-290
[14]   Investigation into the shape selectivity of zeolite catalysts for biomass conversion [J].
Jae, Jungho ;
Tompsett, Geoffrey A. ;
Foster, Andrew J. ;
Hammond, Karl D. ;
Auerbach, Scott M. ;
Lobo, Raul F. ;
Huber, George W. .
JOURNAL OF CATALYSIS, 2011, 279 (02) :257-268
[15]   Catalytic pyrolysis of waste rice husk over mesoporous materials [J].
Jeon, Mi-Jin ;
Kim, Seung-Soo ;
Jeon, Jong-Ki ;
Park, Sung Hoon ;
Kim, Ji Man ;
Sohn, Jung Min ;
Lee, See-Hoon ;
Park, Young-Kwon .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-5
[16]  
Kareem A, 2001, J SCI IND RES INDIA, V60, P319
[17]  
Ko CH, 2012, KOREAN J CHEM ENG, V29, P1657
[18]   Design, construction, and operation of a transported fluid bed process development unit for biomass fast pyrolysis: Effect of pyrolysis temperature [J].
Lappas, A. A. ;
Dimitropoulos, V. S. ;
Antonakou, E. V. ;
Voutetakis, S. S. ;
Vasalos, I. A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (03) :742-747
[19]  
Lappas AA, 2010, RSC ENERGY ENVIRON S, P263
[20]   The critical role of heterogeneous catalysis in lignocellulosic biomass conversion [J].
Lin, Yu-Chuan ;
Huber, George W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (01) :68-80