DEGENERATE CAHN-HILLIARD AND INCOMPRESSIBLE LIMIT OF A KELLER-SEGEL MODEL

被引:0
作者
Elbar, Charles [1 ]
Perthame, Benoit [1 ]
Poulain, Alexandre [2 ]
机构
[1] Univ Paris, Sorbonne Univ, CNRS, Inria,Lab Jacques Louis Lions LJLL, F-75005 Paris, France
[2] Simula Res Lab, Dept Numer Anal & Sci Comp, Oslo, Norway
关键词
Degenerate Cahn-Hilliard equation; Asymptotic analysis; Keller-Segel system; Incom-pressible limit; Hele-Shaw equations; Surface tension; NONLINEAR TUMOR-GROWTH; DARCY MODEL; EQUATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Keller-Segel model is a well-known system representing chemotaxis in living organ-isms. We study the convergence of a generalized nonlinear variant of the Keller-Segel to the degenerate Cahn-Hilliard system. This analysis is made possible from the observation that the Keller-Segel sys-tem is equivalent to a relaxed version of the Cahn-Hilliard system. Furthermore, this latter equivalent system has an interesting application in the modelling of living tissues. Indeed, compressible and in-compressible porous medium type equations are widely used to describe the mechanical properties of living tissues. The relaxed degenerate Cahn-Hilliard system, can be viewed as a compressible living tissue model for which the movement is driven by Darcy's law and takes into account the effects of the viscosity as well as surface tension at the surface of the tissue. We study the convergence of the Keller -Segel system to the Cahn-Hilliard equation and some of the analytical properties of the model such as the incompressible limit of our model. Our analysis relies on a priori estimates, compactness proper-ties, and on the equivalence between the Keller-Segel system and the relaxed degenerate Cahn-Hilliard system.
引用
收藏
页码:1901 / 1926
页数:26
相关论文
共 50 条
  • [21] Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility
    Perthame, Benoit
    Poulain, Alexandre
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (01) : 89 - 112
  • [22] ERROR ANALYSIS OF A FINITE ELEMENT APPROXIMATION OF A DEGENERATE CAHN-HILLIARD EQUATION
    Agosti, A.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (03): : 827 - 867
  • [23] GEOMETRIC EVOLUTION OF BILAYERS UNDER THE DEGENERATE FUNCTIONALIZED CAHN-HILLIARD EQUATION
    Dai, Shibin
    Luong, Toai
    Ma, X., I
    MULTISCALE MODELING & SIMULATION, 2022, 20 (03) : 1127 - 1146
  • [24] Sharp interface limit of the Cahn-Hilliard reaction model for lithium-ion batteries
    Laux, Tim
    Stinson, Kerrek
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (12) : 2557 - 2585
  • [25] Global existence and uniqueness for a singular/degenerate Cahn-Hilliard system with viscosity
    Colli, Pierluigi
    Gilardi, Gianni
    Podio-Guidugli, Paolo
    Sprekels, Juergen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (11) : 4217 - 4244
  • [26] Nonlocal Cahn-Hilliard type model for image inpainting
    Jiang, Dandan
    Azaiez, Mejdi
    Miranville, Alain
    Xu, Chuanju
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 159 : 76 - 91
  • [27] On linear schemes for a Cahn-Hilliard diffuse interface model
    Guillen-Gonzalez, F.
    Tierra, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 140 - 171
  • [28] ON A GENERALIZED CAHN-HILLIARD MODEL WITH p-LAPLACIAN
    Folino, Raffaele
    Fernando Lopez-Rios, Luis
    Strani, Marta
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2022, 27 (9-10) : 647 - 682
  • [29] Phase separation in quasi-incompressible fluids: Cahn-Hilliard model in the Cattaneo-Maxwell framework
    Alessia, Berti
    Bochicchio, Ivana
    Fabrizio, Mauro
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (01): : 135 - 147
  • [30] Characterization of Initial Layer for Fast Chemical Diffusion Limit in Keller-Segel System
    Li, Min
    Xiang, Zhaoyin
    ACTA APPLICANDAE MATHEMATICAE, 2024, 194 (01)