ON A FUNCTIONAL EQUATION ORIGINATING FROM A MIXED ADDITIVE AND CUBIC EQUATION AND ITS STABILITY

被引:0
作者
Janfada, Mohammad [1 ]
Shateri, Tayebe Laal [2 ]
Shourvarzi, Rahele [3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Math, Mashhad, Iran
[2] Hakim Sabzevari Univ, Fac Math & Comp Sci, Sabzevar, Iran
[3] Hakim Sabzevari Univ, Dept Math, Sabzevar, Iran
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2014年 / 43卷 / 01期
关键词
Hyers-Ulam-Rassias stability; Cubic functional equation; Non-Archimedean normed space; Derivation; GENERALIZED QUADRATIC MAPPINGS; ULAM-RASSIAS STABILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study solutions of the 2-variable mixed additive and cubic functional equation f (2x + y, 2z + t) + f (2x - y, 2z - t) = 2f (x + y, z + t) + 2f (x - y, z - t) + 2f (2x, 2z) - 4f (x, z), which has the cubic form f(x, y) = ax(3) + bx(2)y + cxy(2) + dy(3) as a solution. Also the Hyers-Ulam-Rassias stability of this equation in the non-Archimedean Banach spaces is investigated.
引用
收藏
页码:27 / 41
页数:15
相关论文
共 26 条
[1]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]  
Arriola LM, 2005, REAL ANAL EXCH, V31, P125
[4]   Generalized quadratic mappings of r-type in several variables [J].
Baak, C ;
Hong, SK ;
Kim, MJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 310 (01) :116-127
[5]   A functional equation originating from quadratic forms [J].
Bae, Jae-Hyeong ;
Park, Won-Gil .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :1142-1148
[6]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[7]  
Czerwik S, 2003, STABILITY FUNCTIONAL
[8]  
Forti G.L., 1995, AEQUATIONES MATH, V50, P143, DOI DOI 10.1007/BF01831117
[9]  
Hyers D.H., 1992, Aequationes Math, V44, P125, DOI [DOI 10.1007/BF01830975, 10.1007/BF01830975]
[10]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224