ON A FUNCTIONAL EQUATION ORIGINATING FROM A MIXED ADDITIVE AND CUBIC EQUATION AND ITS STABILITY

被引:0
|
作者
Janfada, Mohammad [1 ]
Shateri, Tayebe Laal [2 ]
Shourvarzi, Rahele [3 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Math, Mashhad, Iran
[2] Hakim Sabzevari Univ, Fac Math & Comp Sci, Sabzevar, Iran
[3] Hakim Sabzevari Univ, Dept Math, Sabzevar, Iran
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2014年 / 43卷 / 01期
关键词
Hyers-Ulam-Rassias stability; Cubic functional equation; Non-Archimedean normed space; Derivation; GENERALIZED QUADRATIC MAPPINGS; ULAM-RASSIAS STABILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study solutions of the 2-variable mixed additive and cubic functional equation f (2x + y, 2z + t) + f (2x - y, 2z - t) = 2f (x + y, z + t) + 2f (x - y, z - t) + 2f (2x, 2z) - 4f (x, z), which has the cubic form f(x, y) = ax(3) + bx(2)y + cxy(2) + dy(3) as a solution. Also the Hyers-Ulam-Rassias stability of this equation in the non-Archimedean Banach spaces is investigated.
引用
收藏
页码:27 / 41
页数:15
相关论文
共 50 条