Quaternions and particle dynamics in the Euler fluid equations

被引:65
作者
Gibbon, J. D. [1 ]
Holm, D. D.
Kerr, R. M.
Roulstone, I.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
[3] Univ Surrey, Dept Math & Stat, Guildford GU2 7XH, Surrey, England
关键词
D O I
10.1088/0951-7715/19/8/011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Vorticity dynamics of the three-dimensional incompressible Euler equations are cast into a quaternionic representation governed by the Lagrangian evolution of the tetrad consisting of the growth rate and rotation rate of the vorticity. In turn, the Lagrangian evolution of this tetrad is governed by another that depends on the pressure Hessian. Together these form the basis for a direction of vorticity theorem on Lagrangian trajectories. Moreover, in this representation, fluid particles carry ortho-normal frames whose Lagrangian evolution in time are shown to be directly related to the Frenet-Serret equations for a vortex line. The frame dynamics suggest an elegant Lagrangian relation similarly considered.
引用
收藏
页码:1969 / 1983
页数:15
相关论文
共 45 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]   SMALL-SCALE STRUCTURE OF THE TAYLOR-GREEN VORTEX [J].
BRACHET, ME ;
MEIRON, DI ;
ORSZAG, SA ;
NICKEL, BG ;
MORF, RH ;
FRISCH, U .
JOURNAL OF FLUID MECHANICS, 1983, 130 (MAY) :411-452
[3]   NUMERICAL EVIDENCE OF SMOOTH SELF-SIMILAR DYNAMICS AND POSSIBILITY OF SUBSEQUENT COLLAPSE FOR 3-DIMENSIONAL IDEAL FLOWS [J].
BRACHET, ME ;
MENEGUZZI, M ;
VINCENT, A ;
POLITANO, H ;
SULEM, PL .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (12) :2845-2854
[4]   Convergence of the Vlasov-Poisson system to the incompressible Euler equations [J].
Brenier, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :737-754
[5]   Homogeneous hydrostatic flows with convex velocity profiles [J].
Brenier, Y .
NONLINEARITY, 1999, 12 (03) :495-512
[6]  
Chae D, 2004, ASYMPTOTIC ANAL, V38, P339
[7]   On the Euler equations in the critical Triebel-Lizorkin spaces [J].
Chae, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (03) :185-210
[8]  
CHAE D, 2006, COMMUN PURE APP MATH, V109
[9]   Remarks on the blow-up criterion of the three-dimensional Euler equations [J].
Chae, DH .
NONLINEARITY, 2005, 18 (03) :1021-1029
[10]   Remarks on the helicity of the 3-D incompressible Euler equations [J].
Chae, DH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (03) :501-507