Adaptation of the Jellett Integral to the Case of Rolling Friction

被引:0
作者
Borisov, A. V. [1 ]
Ivanov, A. P. [1 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Oblast, Russia
基金
俄罗斯科学基金会;
关键词
rolling friction; Jellett integral; Chaplygin sphere;
D O I
10.1134/S1028335820070010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In his book A Treatise on the Theory of Friction, Jellett considered the problem of tippe top overturn on a rough base. A key to the solution was the first integral of motion, which is invariant to law of friction; the dot product of the kinetic moment and the radius-vector of the point of contact are constant. The possibilities of generalization of this approach to the case in which the friction force is complemented by a moment of rolling friction are considered.
引用
收藏
页码:252 / 254
页数:3
相关论文
共 14 条
  • [1] How to control the Chaplygin ball using rotors. II
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2013, 18 (1-2) : 144 - 158
  • [2] Dynamics of the tippe top via Routhian reduction
    Ciocci, M. C.
    Langerock, B.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2007, 12 (06) : 602 - 614
  • [3] Towards a Prototype of a Spherical Tippe Top
    Ciocci, M. C.
    Malengier, B.
    Langerock, B.
    Grimonprez, B.
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [4] Gallop E. G., 1904, P CAMBRIDGE PHILOS S, V19, P356
  • [5] [Иванов А.П. Ivanov A.P.], 2019, [Доклады Академии наук, Doklady Akademii nauk], V485, P295, DOI 10.31857/S0869-56524853295-299
  • [6] On the Equilibrium of Magic Stones
    Ivanov, A. P.
    [J]. MECHANICS OF SOLIDS, 2018, 53 : S26 - S31
  • [7] Jellett John H., 1872, A Treatise on the Theory of Friction
  • [8] A two-parameter friction model
    Karapetyan, A. V.
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2009, 73 (04): : 367 - 370
  • [9] Karapetyan A.V., 1997, REGULAR CHAOTIC DIN, V2, P75
  • [10] KARAPETYAN AV, 2008, IZV MATH+, V3, P33