Onsager-Kraichnan Condensation in Decaying Two-Dimensional Quantum Turbulence

被引:88
作者
Billam, T. P. [1 ]
Reeves, M. T. [1 ]
Anderson, B. P. [2 ]
Bradley, A. S. [1 ]
机构
[1] Univ Otago, Dept Phys, Jack Dodd Ctr Quantum Technol, Dunedin 9016, New Zealand
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
INVERSE ENERGY CASCADE; STATISTICAL-MECHANICS; POINT VORTICES; DYNAMICS; STATES;
D O I
10.1103/PhysRevLett.112.145301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Despite the prominence of Onsager's point-vortex model as a statistical description of 2D classical turbulence, a first-principles development of the model for a realistic superfluid has remained an open problem. Here we develop a mapping of a system of quantum vortices described by the homogeneous 2D Gross-Pitaevskii equation (GPE) to the point-vortex model, enabling Monte Carlo sampling of the vortex microcanonical ensemble. We use this approach to survey the full range of vortex states in a 2D superfluid, from the vortex-dipole gas at positive temperature to negative-temperature states exhibiting both macroscopic vortex clustering and kinetic energy condensation, which we term an Onsager-Kraichnan condensate (OKC). Damped GPE simulations reveal that such OKC states can emerge dynamically, via aggregation of small-scale clusters into giant OKC clusters, as the end states of decaying 2D quantum turbulence in a compressible, finite-temperature superfluid. These statistical equilibrium states should be accessible in atomic Bose-Einstein condensate experiments.
引用
收藏
页数:6
相关论文
共 62 条
[1]  
[Anonymous], GLASGOW MATH J
[2]  
Batchelor G.K., 1969, Phys. Fluids, V12, pII, DOI [DOI 10.1063/1.1692443, 10.1063/1.1692443]
[3]   Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques [J].
Blakie, P. B. ;
Bradley, A. S. ;
Davis, M. J. ;
Ballagh, R. J. ;
Gardiner, C. W. .
ADVANCES IN PHYSICS, 2008, 57 (05) :363-455
[4]   Numerical method for evolving the projected Gross-Pitaevskii equation [J].
Blakie, P. Blair .
PHYSICAL REVIEW E, 2008, 78 (02)
[5]   Two-Dimensional Turbulence [J].
Boffetta, Guido ;
Ecke, Robert E. .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 44, 2012, 44 :427-451
[6]  
Boyd JP, 2000, CHEBYSHEV FOURIER SP
[7]   Bose-Einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation [J].
Bradley, A. S. ;
Gardiner, C. W. ;
Davis, M. J. .
PHYSICAL REVIEW A, 2008, 77 (03)
[8]   Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence [J].
Bradley, Ashton S. ;
Anderson, Brian P. .
PHYSICAL REVIEW X, 2012, 2 (04)
[9]   STATISTICS OF 2-DIMENSIONAL POINT VORTICES AND HIGH-ENERGY VORTEX STATES [J].
CAMPBELL, LJ ;
ONEIL, K .
JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) :495-529
[10]   Dynamics of saturated energy condensation in two-dimensional turbulence [J].
Chan, Chi-kwan ;
Mitra, Dhrubaditya ;
Brandenburg, Axel .
PHYSICAL REVIEW E, 2012, 85 (03)