Particle trajectories of nonlinear gravity waves in deep water

被引:11
作者
Chang, Hsien-Kuo [1 ]
Chen, Yang-Yi [2 ]
Liou, Jin-Cheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu 300, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Marine Environm & Engn, Kaohsiung 804, Taiwan
关键词
Mass transport; Particle trajectory; Lagrangian approach; Runge-Kutta-Verner method; Lagrangian wave period; MASS-TRANSPORT; EQUATIONS; STEEP;
D O I
10.1016/j.oceaneng.2008.12.007
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The paper presents a numerical method for calculating the particle trajectories of nonlinear gravity waves in deep water. Particle trajectories, mass-transport velocity and Lagrangian wave period can be accurately determined by the proposed method. The high success rate of the proposed method is examined by comparing the present results with those of(a) Longuet-Higgins, M.S., 1986,1987. Eulerian and Lagrangian aspects of surface waves. journal of Fluid Mechanics 173, 683-707 and (b) Lagrangian moments and mass transport in Stokes waves. Journal of Fluid Mechanics 179,547-555. It is shown that the dimensionless mass-transport velocity can exceed 10% for large waves, and the Lagrangian wave period is much larger than the Eulerian wave period for large waves. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:324 / 329
页数:6
相关论文
共 39 条
[1]  
[Anonymous], THEORIE WELLEN ABHAN
[2]   Explicit wave-averaged primitive equations using a generalized Lagrangian mean [J].
Ardhuin, Fabrice ;
Rascle, Nicolas ;
Belibassakis, K. A. .
OCEAN MODELLING, 2008, 20 (01) :35-60
[3]   New asymptotic description of nonlinear water waves in Lagrangian coordinates [J].
Buldakov, E. V. ;
Taylor, P. H. ;
Taylor, R. Eatock .
JOURNAL OF FLUID MECHANICS, 2006, 562 :431-444
[4]   Particle trajectory and mass transport of finite-amplitude waves in water of uniform depth [J].
Chang, Hsien-Kuo ;
Liou, Jin-Cheng ;
Su, Ming-Yang .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2007, 26 (03) :385-403
[5]  
CHEN SM, 1994, P 3 NAT C SCI TECHN, V1, P29
[6]   On the Lagrangian description of steady surface gravity waves [J].
Clamond, Didier .
JOURNAL OF FLUID MECHANICS, 2007, 589 :433-454
[7]   STEEP GRAVITY-WAVES IN WATER OF ARBITRARY UNIFORM DEPTH [J].
COKELET, ED .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 286 (1335) :183-230
[8]   Edge waves along a sloping beach [J].
Constantin, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (45) :9723-9731
[9]   Particle trajectories in linear water waves [J].
Constantin, Adrian ;
Villari, Gabriele .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2008, 10 (01) :1-18
[10]   Particle trajectories in solitary water waves [J].
Constantin, Adrian ;
Escher, Joachim .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (03) :423-431