DualPrompt: Complementary Prompting for Rehearsal-Free Continual Learning

被引:208
作者
Wang, Zifeng [1 ]
Zhang, Zizhao [2 ]
Ebrahimi, Sayna [2 ]
Sun, Ruoxi [2 ]
Zhang, Han [3 ]
Lee, Chen-Yu [2 ]
Ren, Xiaoqi [2 ]
Su, Guolong [3 ]
Perot, Vincent [3 ]
Dy, Jennifer [1 ]
Pfister, Tomas [2 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
[2] Google Cloud AI, Sunnyvale, CA USA
[3] Google Res, Mountain View, CA USA
来源
COMPUTER VISION, ECCV 2022, PT XXVI | 2022年 / 13686卷
关键词
Continual learning; Rehearsal-free; Prompt-based learning; SYSTEMS;
D O I
10.1007/978-3-031-19809-0_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual learning aims to enable a single model to learn a sequenceof taskswithoutcatastrophic forgetting. Top-performingmethods usually require a rehearsal buffer to store past pristine examples for experience replay, which, however, limits their practical value due to privacy and memory constraints. In this work, we present a simple yet effective framework, DualPrompt, which learns a tiny set of parameters, called prompts, to properly instruct a pre-trainedmodel to learn tasks arriving sequentially without buffering past examples. DualPrompt presents a novel approach to attach complementary prompts to the pre-trained backbone, and then formulates the objective as learning task-invariant and task-specific "instructions". With extensive experimental validation, DualPrompt consistently sets state-of-the-art performance under the challenging class-incremental setting. In particular, DualPrompt outperforms recent advanced continual learningmethodswith relatively large buffer sizes. We also introduce amore challenging benchmark, Split ImageNet-R, to help generalize rehearsal-free continual learning research. Source code is available at https://github.com/ google-research/l2p.
引用
收藏
页码:631 / 648
页数:18
相关论文
共 67 条
[1]  
Rusu AA, 2016, Arxiv, DOI [arXiv:1606.04671, 10.48550/arXiv.1606.04671, DOI 10.43550/ARXIV:1606.04671, DOI 10.48550/ARXIV.1606.04671]
[2]   Memory Aware Synapses: Learning What (not) to Forget [J].
Aljundi, Rahaf ;
Babiloni, Francesca ;
Elhoseiny, Mohamed ;
Rohrbach, Marcus ;
Tuytelaars, Tinne .
COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 :144-161
[3]  
[Anonymous], 2021, NeurIPS
[4]  
[Anonymous], 2019, NEURIPS
[5]  
Bulatov Y., 2011, NOTMNIST DATASET
[6]  
Buzzega Pietro, 2020, NeurIPS
[7]  
Cha Hyuntak, 2021, P IEEE CVF INT C COM, P9516, DOI DOI 10.48550/ARXIV.2106.14413
[8]  
Chaudhry A., 2019, arXiv
[9]  
Chaudhry A, 2021, Arxiv, DOI arXiv:2002.08165
[10]  
Chaudhry A, 2019, Arxiv, DOI arXiv:1812.00420