Function and effect of bone morphogenetic protein-7 in kidney bone and the bone-vascular links in chronic kidney disease

被引:44
作者
Mathew, S.
Davies, M.
Lund, R.
Saab, G.
Hruska, K. A.
机构
[1] Washington Univ, Sch Med, Dept Pediat, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA
关键词
bone morphogenetic protein-7; renal osteodystrophy; vascular calcification;
D O I
10.1111/j.1365-2362.2006.01663.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In two independent and separate studies, we have shown that renal injury and chronic kidney disease (CKD) directly inhibit skeletal anabolism, and that stimulation of bone formation decreased the serum phosphate. In the first study, the serum Ca PO4, parathyroid hormone (PTH), and calcitriol were maintained normal after renal ablation in mice, and even mild renal injury equivalent to stage 3 CKD decreased bone formation rates. More recently, these observations were rediscovered in low-density lipoprotein receptor null (LDLR-/-) mice fed high-fat/cholesterol diets, a model of the metabolic syndrome (hypertension, obesity, dyslipidemia and insulin resistance). We demonstrated that these mice have vascular calcification (VC) of both the intimal atherosclerotic type and medial calcification. We have also shown that VC is made worse by CKD and ameliorated by bone morphogenetic protein-7 (BMP-7). The finding that high-fat fed LDLR-/- animals with CKD had hyperphosphatemia which was prevented in BMP-7-treated animals lead us to examine the skeletons of these mice. It was found that significant reductions in bone formation rates were associated with high-fat feeding, and superimposing CKD resulted in the adynamic bone disorder (ABD), while VC was made worse. The effect of CKD to decrease skeletal anabolism (decreased bone formation rates and reduced number of bone modelling units) occurred despite secondary hyperparathyroidism. The BMP-7 treatment corrected the ABD and hyperphosphatemia, owing to BMP-7-driven stimulation of skeletal phosphate deposition reducing plasma phosphate and thereby removing a major stimulus to VC. A pathological link between abnormal bone mineralization and VC through the serum phosphorus was demonstrated by the partial effectiveness of directly reducing the serum phosphate by a phosphate binder that had no skeletal action. Thus, in the metabolic syndrome with CKD, a reduction in bone forming potential of osteogenic cells leads to the ABD producing hyperphosphatemia and VC, processes ameliorated by BMP-7, in part through increased bone formation and skeletal deposition of phosphate and in part through direct actions on vascular smooth muscle cells. We have demonstrated that the processes leading to vascular calcification begin with even mild levels of renal injury affecting the skeleton before demonstrable hyperphosphatemia and that they are preventable and treatable. Therefore, early intervention in the skeletal disorder associated with CKD is warranted and may affect mortality of the disease.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 50 条
  • [21] Chronic kidney disease - Mineral bone disorder
    Moe, Sharon M.
    PERITONEAL DIALYSIS INTERNATIONAL, 2008, 28 : S5 - S10
  • [22] Mineral bone disorders in chronic kidney disease
    Hou, Yi-Chou
    Lu, Chien-Lin
    Lu, Kuo-Cheng
    NEPHROLOGY, 2018, 23 : 88 - 94
  • [23] Chronic kidney disease and bone metabolism
    Kazama, Junichiro James
    Matsuo, Koji
    Iwasaki, Yoshiko
    Fukagawa, Masafumi
    JOURNAL OF BONE AND MINERAL METABOLISM, 2015, 33 (03) : 245 - 252
  • [24] Bone, inflammation and chronic kidney disease
    Mazzaferro, Sandro
    De Martini, Natalia
    Rotondi, Silverio
    Tartaglione, Lida
    Urena-Torres, Pablo
    Bover, Jordi
    Pasquali, Marzia
    CLINICA CHIMICA ACTA, 2020, 506 : 236 - 240
  • [25] Bone health in chronic kidney disease-mineral and bone disease
    Gal-Moscovici, Anca
    Sprague, Stuart M.
    ADVANCES IN CHRONIC KIDNEY DISEASE, 2007, 14 (01) : 27 - 36
  • [26] Bone morphogenetic proteins in development and homeostasis of kidney
    Simic, P
    Vukicevic, S
    CYTOKINE & GROWTH FACTOR REVIEWS, 2005, 16 (03) : 299 - 308
  • [27] Adynamic Bone Disease: From Bone to Vessels in Chronic Kidney Disease
    Bover, Jordi
    Urena, Pablo
    Brandenburg, Vincent
    Goldsmith, David
    Ruiz, Cesar
    DaSilva, Iara
    Bosch, Ricardo J.
    SEMINARS IN NEPHROLOGY, 2014, 34 (06) : 626 - 640
  • [28] New Insights to the Crosstalk between Vascular and Bone Tissue in Chronic Kidney Disease-Mineral and Bone Disorder
    Mace, Maria L.
    Egstrand, Soren
    Morevati, Marya
    Olgaard, Klaus
    Lewin, Ewa
    METABOLITES, 2021, 11 (12)
  • [29] Treatment of chronic kidney disease-mineral bone disorder and vascular complications
    Moe, Sharon M.
    THERAPEUTIC APHERESIS AND DIALYSIS, 2006, 10 : S2 - S15
  • [30] Bone disease in pediatric chronic kidney disease
    Wesseling-Perry, Katherine
    PEDIATRIC NEPHROLOGY, 2013, 28 (04) : 569 - 576