Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry

被引:66
|
作者
Battisti, Marco Valerio [1 ,2 ,3 ]
Meljanac, Stjepan [3 ]
机构
[1] Univ Roma, Dipartimento Fis G9, I-00185 Rome, Italy
[2] Univ Roma, ICRA, I-00185 Rome, Italy
[3] Rudjer Bovskov Inst, HR-10002 Zagreb, Croatia
来源
PHYSICAL REVIEW D | 2009年 / 79卷 / 06期
关键词
DOUBLY SPECIAL RELATIVITY; QUANTUM-MECHANICS; STRING THEORY; PRINCIPLE; LENGTH; GRAVITY; REALIZATIONS; SCALE; MODEL;
D O I
10.1103/PhysRevD.79.067505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that the Euclidean Snyder noncommutative space implies infinitely many different physical predictions. The distinct frameworks are specified by generalized uncertainty relations underlying deformed Heisenberg algebras. Considering the one-dimensional case in the minisuperspace arena, the bouncing Universe dynamics of loop quantum cosmology can be recovered.
引用
收藏
页数:4
相关论文
共 44 条
  • [1] The Geometry of Noncommutative Space-Time
    R. Vilela Mendes
    International Journal of Theoretical Physics, 2017, 56 : 259 - 269
  • [2] The Geometry of Noncommutative Space-Time
    Mendes, R. Vilela
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (01) : 259 - 269
  • [3] Noncommutative geometry, symmetries and quantum structure of space-time
    Govindarajan, T. R.
    Gupta, Kumar S.
    Harikumar, E.
    Meljanac, S.
    5TH INTERNATIONAL WORKSHOP DICE2010: SPACE-TIME-MATTER - CURRENT ISSUES IN QUANTUM MECHANICS AND BEYOND, 2011, 306
  • [4] Maximal extension of the Schwarzschild space-time inspired by noncommutative geometry
    Arraut, I.
    Batic, D.
    Nowakowski, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [5] Entropic uncertainty relations in Schwarzschild space-time
    Wang, Tian-Yu
    Wang, Dong
    PHYSICS LETTERS B, 2024, 855
  • [6] Noncommutative space-time and relativistic dynamics
    Mir-Kasimov, R. M.
    PHYSICS OF PARTICLES AND NUCLEI, 2017, 48 (02) : 309 - 318
  • [7] The standard electroweak model in the noncommutative DFR space-time
    Neves, Mario J.
    Abreu, Everton M. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (33):
  • [8] Closed superstring in noncommutative compact space-time
    Kamani, D
    MODERN PHYSICS LETTERS A, 2002, 17 (37) : 2443 - 2451
  • [9] Uncertainty relations for a non-canonical phase-space noncommutative algebra
    Dias, Nuno C.
    Prata, Joao N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (22)
  • [10] GREEN FUNCTIONS IN LORENTZ INVARIANT NONCOMMUTATIVE SPACE-TIME
    Abreu, Everton M. C.
    Neves, Mario J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (20):