Learning universal multiview dictionary for human action recognition

被引:37
作者
Yao, Tingting [1 ,2 ]
Wang, Zhiyong [1 ]
Xie, Zhao [2 ]
Gao, Jun [2 ]
Feng, David Dagan [1 ]
机构
[1] Univ Sydney, Sch Informat Technol, Sydney, NSW 2006, Australia
[2] Hefei Univ Technol, Sch Comp & Informat, Hefei, Anhui, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Dictionary learning; Sparse coding; Multiview learning; Action recognition; MOTION; PARTS;
D O I
10.1016/j.patcog.2016.11.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, many sparse coding based approaches have been proposed for human action recognition. However, most of them focus on learning a discriminative dictionary without explicitly taking into account the common patterns shared among different action classes. In this paper, we propose a novel discriminative dictionary learning framework by formulating a universal dictionary which consists of a shared sub-dictionary and a set of class-specific sub-dictionaries. As a result, inter-class differences can be better characterized with sparse codes obtained from the class-specific dictionaries. In addition, group sparsity and locality constraints are utilized to preserve therelationship and structure among features. In order to leverage the benefits of multiple descriptors, a dictionary is learned for each view, and the corresponding sparse representations of those descriptors are fused in a low dimensional feature space together with temporal information. The experimental results on three challenging datasets demonstrate that our method is able to achieve better performance than a number of stateof-the-art ones.
引用
收藏
页码:236 / 244
页数:9
相关论文
共 52 条
[1]   Human Activity Analysis: A Review [J].
Aggarwal, J. K. ;
Ryoo, M. S. .
ACM COMPUTING SURVEYS, 2011, 43 (03)
[2]  
[Anonymous], RR7373INRIA
[3]  
[Anonymous], 2006, ADV NEURAL INF PROCE
[4]  
[Anonymous], 2 ACM INT WORKSH HUM
[5]  
[Anonymous], 2008, 2008 IEEE C COMP VIS, DOI DOI 10.1109/CVPR.2008.4587652
[6]  
[Anonymous], PATTERN RECOGNIT
[7]  
Bhattacharya S., 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P2593, DOI 10.1109/CVPR.2011.5995746
[8]  
Brendel W, 2010, LECT NOTES COMPUT SC, V6312, P721, DOI 10.1007/978-3-642-15552-9_52
[9]   Multiple Kernel Learning for Visual Object Recognition: A Review [J].
Bucak, Serhat S. ;
Jin, Rong ;
Jain, Anil K. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (07) :1354-1369
[10]   Sparse representation and learning in visual recognition: Theory and applications [J].
Cheng, Hong ;
Liu, Zicheng ;
Yang, Lu ;
Chen, Xuewen .
SIGNAL PROCESSING, 2013, 93 (06) :1408-1425