Hot-pressing for improving performance of CNT/conjugated polymer thermoelectric films and power generators

被引:27
作者
Lee, Woohwa [1 ,2 ]
Kang, Young Hun [1 ]
Lee, Jun Young [2 ]
Jang, Kwang-Suk [3 ,4 ]
Cho, Song Yun [1 ]
机构
[1] Korea Res Inst Chem Technol, Div Adv Mat, Daejeon 34114, South Korea
[2] Sungkyunkwan Univ, Dept Chem Engn, Suwon 16419, South Korea
[3] Hankyong Natl Univ, Dept Chem Engn, Anseong 17579, South Korea
[4] Hankyong Natl Univ, Res Ctr Chem Technol, Anseong 17579, South Korea
关键词
Thermoelectric; Organic; Nanocomposites; Hot-pressing; Power generator; CARBON NANOTUBES; THERMAL-CONDUCTIVITY; COMPOSITE-MATERIALS; HYBRID FILMS; THIN-FILM; NANOCOMPOSITES; THERMOPOWER;
D O I
10.1016/j.mtcomm.2016.12.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study demonstrates a post-treatment method for enhancing the thermoelectric power factor of carbon nanotube (CNT)/conjugated polymer nanocomposite films. For the fabrication of the nanocomposite films a mixture of P3HT (50 wt%) and few-walled CNT (50 wt%) in o-dichlorobenzene (oDCB), or a mixture of PEDOT:PSS (50 wt%) and few-walled CNT (50 wt%) in distilled deionized (DDI) water was used. The uniaxial hot-pressing treatment of the as-prepared nanocomposite films resulted in their densification and increased the electrical conductivity and power factor. It was found that the thermoelectric power factor of the CNT/P3HT and CNT/PEDOT:PSS nanocomposite films increased from 150 +/- 9 to 217 +/- 30 mu W m(-1)K(-2), and from 371 +/- 44 to 572 +/- 92 mu W m(-1)K(-2), respectively, after hot-pressing. We fabricated organic thermoelectric generators using the hot-pressed CNT/conjugated polymer nanocomposites and evaluated their capabilities of electrical power generation. The maximum power outputs of the hot-pressed CNT/P3HT and CNT/PEDOT:PSS OTEGs were 46.0 and 36.3 nW, respectively, under a temperature difference of 10 K. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 22 条
[1]   Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor [J].
Bounioux, Celine ;
Diaz-Chao, Pablo ;
Campoy-Quiles, Mariano ;
Martin-Gonzalez, Marisol S. ;
Goni, Alejandro R. ;
Yerushalmi-Rozene, Rachel ;
Mueller, Christian .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :918-925
[2]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/NMAT3012, 10.1038/nmat3012]
[3]   THERMOELECTRIC POLYMERS Behind organics' thermopower [J].
Chabinyc, Michael .
NATURE MATERIALS, 2014, 13 (02) :119-121
[4]   Superlow Thermal Conductivity 3D Carbon Nanotube Network for Thermoelectric Applications [J].
Chen, Jikun ;
Gui, Xuchun ;
Wang, Zewei ;
Li, Zhen ;
Xiang, Rong ;
Wang, Kunlin ;
Wu, Dehai ;
Xia, Xugui ;
Zhou, Yanfei ;
Wang, Qun ;
Tang, Zikang ;
Chen, Lidong .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (01) :81-86
[5]   Completely Organic Multilayer Thin Film with Thermoelectric Power Factor Rivaling Inorganic Tellurides [J].
Cho, Chungyeon ;
Stevens, Bart ;
Hsu, Jui-Hung ;
Bureau, Ricky ;
Hagen, David A. ;
Regev, Oren ;
Yu, Choongho ;
Grunlan, Jaime C. .
ADVANCED MATERIALS, 2015, 27 (19) :2996-3001
[6]  
Chun KY, 2010, NAT NANOTECHNOL, V5, P853, DOI [10.1038/nnano.2010.232, 10.1038/NNANO.2010.232]
[7]   Preparation and characterization of graphene nanosheets/poly(3-hexylthiophene) thermoelectric composite materials [J].
Du, Y. ;
Cai, K. F. ;
Shen, S. Z. ;
Casey, P. S. .
SYNTHETIC METALS, 2012, 162 (23) :2102-2106
[8]   Preparation and characterization of multiwalled carbon nanotube/poly(3-hexylthiophene) thermoelectric composite materials [J].
Du, Y. ;
Shen, S. Z. ;
Yang, W. D. ;
Cai, K. F. ;
Casey, P. S. .
SYNTHETIC METALS, 2012, 162 (3-4) :375-380
[9]   Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films [J].
Hong, Cheon Taek ;
Lee, Woohwa ;
Kang, Young Hun ;
Yoo, Youngjae ;
Ryu, Juwhan ;
Cho, Song Yun ;
Jang, Kwang-Suk .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (23) :12314-12319
[10]  
Kim GH, 2013, NAT MATER, V12, P719, DOI [10.1038/NMAT3635, 10.1038/nmat3635]