Passively mode-locked semiconductor quantum dot on silicon laser with 400 Hz RF line width

被引:25
作者
Auth, Dominik [1 ]
Liu, Songtao [2 ]
Norman, Justin [3 ]
Bowers, John Edward [2 ]
Breuer, Stefan [1 ]
机构
[1] Tech Univ Darmstadt, Inst Appl Phys, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[2] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
关键词
TIMING JITTER; PHOTONICS; SI; THRESHOLD; CIRCUITS; DEVICES; GAIN; CHIP;
D O I
10.1364/OE.27.027256
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Mode-locked InAs/InGaAs quantum dot lasers emitting optical frequency combs centered at 1310 nm are promising sources for high-speed and high-capacity communication applications. We report on the stable optical pulse train generation by a monolithic passively mode-locked edge-emitting two-section quantum dot laser based on a five-stack InAs/InGaAs dots-in-a-well structure directly grown on an on-axis (001) silicon substrate by solid-source molecular beam epitaxy. Optical pulses as short as 1.7 ps at a pulse repetition rate or inter-mode beat frequency of 9.4 GHz are obtained. A minimum pulse-to-pulse timing jitter of 9 fs, corresponding to a repetition rate line width of 4(X) Hz, is demonstrated. The generated optical frequency combs yield exceptional low amplitude jitter performance and comb widths exceed 5.5 nm at a -3 dB criteria, containing more than 100 comb carriers. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:27256 / 27266
页数:11
相关论文
共 51 条
[1]   Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser [J].
Asryan, LV ;
Suris, RA .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (04) :554-567
[2]   Mode locking in a tapered two-section quantum dot laser: design and experiment [J].
Bardella, P. ;
Drzewietzki, L. ;
Krakowski, M. ;
Krestnikov, I ;
Breuer, S. .
OPTICS LETTERS, 2018, 43 (12) :2827-2830
[3]   Cavity-enhanced dual-comb spectroscopy [J].
Bernhardt, Birgitta ;
Ozawa, Akira ;
Jacquet, Patrick ;
Jacquey, Marion ;
Kobayashi, Yohei ;
Udem, Thomas ;
Holzwarth, Ronald ;
Guelachvili, Guy ;
Haensch, Theodor W. ;
Picque, Nathalie .
NATURE PHOTONICS, 2010, 4 (01) :55-57
[4]   High speed nanophotonic devices based on quantum dots [J].
Bimberg, D. ;
Fiol, G. ;
Kuntz, M. ;
Meuer, C. ;
Laemmlin, M. ;
Ledentsov, N. N. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2006, 203 (14) :3523-3532
[5]   Quantum dot photonic devices for lightwave communication [J].
Bimberg, D ;
Kuntz, M ;
Laemmlin, M .
MICROELECTRONICS JOURNAL, 2005, 36 (3-6) :175-179
[6]   Ultrafast carrier dynamics in InGaAs quantum dot materials and devices [J].
Borri, Paola ;
Schneider, Stephan ;
Langbein, Wolfgang ;
Bimberg, Dieter .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (04) :S33-S46
[7]   Demonstration of a silicon Raman laser [J].
Boyraz, O ;
Jalali, B .
OPTICS EXPRESS, 2004, 12 (21) :5269-5273
[8]   Low Noise Performance of Passively Mode-Locked 10-GHz Quantum-Dot Laser Diode [J].
Carpintero, Guillermo ;
Thompson, Mark G. ;
Penty, Richard V. ;
White, Ian H. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (06) :389-391
[9]  
Cheng SS, 2016, 2016 2ND INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC AND INFORMATION TECHNOLOGY ENGINEERING (ICMITE 2016), P1
[10]   Passively mode-locked III-V/silicon laser with continuous-wave optical injection [J].
Cheng, Yuanbing ;
Luo, Xianshu ;
Song, Junfeng ;
Liow, Tsung-Yang ;
Lo, Guo-Qiang ;
Cao, Yulian ;
Hu, Xiaonan ;
Li, Xiaohui ;
Lim, Peng Huei ;
Wang, Qi Jie .
OPTICS EXPRESS, 2015, 23 (05) :6392-6399