Y Kaledin's degeneration theorem and topological Hochschild homology

被引:6
作者
Mathew, Akhil [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
CYCLIC HOMOLOGY; K-THEORY; DECOMPOSITION; RINGS;
D O I
10.2140/gt.2020.24.2675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof of Kaledin's theorem on the degeneration of the noncommutative Hodge-to-de Rham spectral sequence. Our approach is based on topological Hochschild homology and the theory of cyclotomic spectra. As a consequence, we also obtain relative versions of the degeneration theorem, both in characteristic zero and for regular bases in characteristic p.
引用
收藏
页码:2675 / 2708
页数:34
相关论文
共 45 条
[1]  
Angeltveit V, 2018, DOC MATH, V23, P2101
[2]  
[Anonymous], 2007, PREPRINT
[3]  
[Anonymous], 2002, MEM AM MATH SOC
[4]  
[Anonymous], 1968, Publ. Math. Inst. Hautes Etudes Sci., DOI DOI 10.1007/BF02698925
[5]  
Antieau B, 2017, PREPRINT
[6]   Periodic cyclic homology and derived de Rham cohomology [J].
Antieau, Benjamin .
ANNALS OF K-THEORY, 2019, 4 (03) :505-519
[7]  
Antieau B, 2018, SEL MATH-NEW SER, V24, P4555, DOI 10.1007/s00029-018-0427-x
[8]   Brauer groups and etale cohomology in derived algebraic geometry [J].
Antieau, Benjamin ;
Gepner, David .
GEOMETRY & TOPOLOGY, 2014, 18 (02) :1149-1244
[9]  
Ayala D., 2017, PREPRINT
[10]  
Belmans P, 2005, The Stacks project, electronic reference