Stabilized finite element applications in geomechanics

被引:0
|
作者
Zimmermann, T [1 ]
Commend, S [1 ]
机构
[1] Swiss Fed Inst Technol, EPFL, Dept Civil Engn, Lab Struct & Continuum Mech, CH-1015 Lausanne, Switzerland
来源
COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM | 2001年
关键词
stabilization; finite elements; elastoplasticity; geomechanics; volumetric locking;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Locking phenomena and pressure oscillations are often associated with the use of low order elements to simulate incompressible or dilatant behavior, typical of geomechanical applications. A stabilized Galerkin Least-Squares formulation (GLS), along the lines advocated by Hughes et al (1986) for fluid mechanics, is extended in this paper to a mixed displacement-pressure formulation of elastoplasticity. Applications in geomechanics demonstrate that the proposed formulation provides an appropriate and general solution to overcome locking phenomena.
引用
收藏
页码:533 / 538
页数:6
相关论文
共 50 条
  • [31] SUPG stabilized finite element resolution of the Navier-Stokes equations - Applications to water treatment engineering
    Vellando, P
    Puertas, J
    Colominas, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (51-52) : 5899 - 5922
  • [32] A stabilized hybrid mixed finite element method for poroelasticity
    Niu, Chunyan
    Rui, Hongxing
    Hu, Xiaozhe
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (02) : 757 - 774
  • [33] Stabilized Finite Element Methods for the Schrodinger Wave Equation
    Kannan, Raguraman
    Masud, Arif
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2009, 76 (02): : 1 - 7
  • [34] Stabilized plane and axisymmetric Lobatto finite element models
    Hu, Y. C.
    Sze, K. Y.
    Zhou, Y. X.
    COMPUTATIONAL MECHANICS, 2015, 56 (05) : 879 - 903
  • [35] A stabilized discontinuous finite element method for elliptic problems
    Ewing, RE
    Wang, JP
    Yang, YJ
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2003, 10 (1-2) : 83 - 104
  • [36] A stabilized finite element method for modeling of gas discharges
    Becker, M. M.
    Loffhagen, D.
    Schmidt, W.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (08) : 1230 - 1241
  • [37] Stabilized plane and axisymmetric piezoelectric finite element models
    Sze, KY
    Yang, XM
    Yao, LQ
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2004, 40 (9-10) : 1105 - 1122
  • [38] Stabilized finite element method for simulation of freeway traffic
    Milbradt, P
    Rose, M
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2005, 19 (05) : 409 - 412
  • [39] ON THE ADAPTIVE SELECTION OF THE PARAMETER IN STABILIZED FINITE ELEMENT APPROXIMATIONS
    Ainsworth, Mark
    Allendes, Alejandro
    Barrenechea, Gabriel R.
    Rankin, Richard
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) : 1585 - 1609
  • [40] PRESSURE STABILIZED FINITE ELEMENT FORMULATION FOR DARCY FLOW
    Nafa, Kamel
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 341 - 349