Approximation schemes for the parametric knapsack problem

被引:14
|
作者
Giudici, Alberto [1 ]
Halffmann, Pascal [2 ]
Ruzika, Stefan [2 ]
Thielen, Clemens [3 ]
机构
[1] Erasmus Univ, Rotterdam Sch Management, NL-3000 DR Rotterdam, Netherlands
[2] Univ Koblenz Landau, Math Inst, Campus Koblenz, D-56070 Koblenz, Germany
[3] Univ Kaiserslautern, Dept Math, Paul Ehrlich Str 14, D-67663 Kaiserslautern, Germany
关键词
Parametric optimization problems; Approximation algorithms; Bicriteria optimization problems; MAXIMUM FLOW PROBLEM; ALGORITHMS; INTEGER;
D O I
10.1016/j.ipl.2016.12.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the (linear) parametric 0-1 knapsack problem in which the profits of the items are affine-linear functions of a real-valued parameter and the task is to compute a solution for all values of the parameter. For this problem, it is known that the piecewise linear convex function mapping the parameter to the optimal objective value of the corresponding instance (called the optimal value function) can have exponentially many breakpoints (points of slope change), which implies that every optimal algorithm for the problem must output a number of solutions that is exponential in the number of items. We provide the first (parametric) polynomial time approximation scheme (PTAS) for the parametric 0-1 knapsack problem. Moreover, we exploit the connection between the parametric problem and the bicriteria problem in order to show that the parametric 0-1 knapsack problem admits a parametric FPTAS when the parameter is restricted to the positive real line and the slopes and intercepts of the affine-linear profit functions of the items are nonnegative. The method used to obtain this result applies to many linear parametric optimization problems and provides a general connection between bicriteria and linear parametric optimization problems. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 50 条
  • [21] A Fast Approximation Scheme for the Multiple Knapsack Problem
    Jansen, Klaus
    SOFSEM 2012: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2012, 7147 : 313 - 324
  • [22] A successive approximation algorithm for the multiple knapsack problem
    Wang, Zhenbo
    Xing, Wenxun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (04) : 347 - 366
  • [23] Improved approximation algorithms for a bilevel knapsack problem
    Qiu, Xian
    Kern, Walter
    THEORETICAL COMPUTER SCIENCE, 2015, 595 : 120 - 129
  • [24] PARAMETERIZED APPROXIMATION SCHEME FOR THE MULTIPLE KNAPSACK PROBLEM
    Jansen, Klaus
    SIAM JOURNAL ON COMPUTING, 2009, 39 (04) : 1392 - 1412
  • [25] Approximation algorithms for the generalized incremental knapsack problem
    Yuri Faenza
    Danny Segev
    Lingyi Zhang
    Mathematical Programming, 2023, 198 : 27 - 83
  • [26] Approximation algorithms for the generalized incremental knapsack problem
    Faenza, Yuri
    Segev, Danny
    Zhang, Lingyi
    MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 27 - 83
  • [27] Approximation schemes for r-weighted Minimization Knapsack problems
    Khaled Elbassioni
    Areg Karapetyan
    Trung Thanh Nguyen
    Annals of Operations Research, 2019, 279 : 367 - 386
  • [28] Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack
    Grandoni, Fabrizio
    Kratsch, Stefan
    Wiese, Andreas
    27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [29] PARALLEL APPROXIMATION SCHEMES FOR SUBSET SUM AND KNAPSACK-PROBLEMS
    PETERS, JG
    RUDOLPH, L
    ACTA INFORMATICA, 1987, 24 (04) : 417 - 432
  • [30] Approximation schemes for r-weighted Minimization Knapsack problems
    Elbassioni, Khaled
    Karapetyan, Areg
    Trung Thanh Nguyen
    ANNALS OF OPERATIONS RESEARCH, 2019, 279 (1-2) : 367 - 386