Approximation schemes for the parametric knapsack problem

被引:14
|
作者
Giudici, Alberto [1 ]
Halffmann, Pascal [2 ]
Ruzika, Stefan [2 ]
Thielen, Clemens [3 ]
机构
[1] Erasmus Univ, Rotterdam Sch Management, NL-3000 DR Rotterdam, Netherlands
[2] Univ Koblenz Landau, Math Inst, Campus Koblenz, D-56070 Koblenz, Germany
[3] Univ Kaiserslautern, Dept Math, Paul Ehrlich Str 14, D-67663 Kaiserslautern, Germany
关键词
Parametric optimization problems; Approximation algorithms; Bicriteria optimization problems; MAXIMUM FLOW PROBLEM; ALGORITHMS; INTEGER;
D O I
10.1016/j.ipl.2016.12.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the (linear) parametric 0-1 knapsack problem in which the profits of the items are affine-linear functions of a real-valued parameter and the task is to compute a solution for all values of the parameter. For this problem, it is known that the piecewise linear convex function mapping the parameter to the optimal objective value of the corresponding instance (called the optimal value function) can have exponentially many breakpoints (points of slope change), which implies that every optimal algorithm for the problem must output a number of solutions that is exponential in the number of items. We provide the first (parametric) polynomial time approximation scheme (PTAS) for the parametric 0-1 knapsack problem. Moreover, we exploit the connection between the parametric problem and the bicriteria problem in order to show that the parametric 0-1 knapsack problem admits a parametric FPTAS when the parameter is restricted to the positive real line and the slopes and intercepts of the affine-linear profit functions of the items are nonnegative. The method used to obtain this result applies to many linear parametric optimization problems and provides a general connection between bicriteria and linear parametric optimization problems. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 50 条
  • [1] Faster approximation schemes for the two-dimensional knapsack problem
    Heydrich, Sandy
    Wiese, Andreas
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 79 - 98
  • [2] Faster Approximation Schemes for the Two-Dimensional Knapsack Problem
    Heydrich, Sandy
    Wiese, Andreas
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (04)
  • [3] On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
    Britta Schulze
    Michael Stiglmayr
    Luís Paquete
    Carlos M. Fonseca
    David Willems
    Stefan Ruzika
    Mathematical Methods of Operations Research, 2020, 92 : 107 - 132
  • [4] On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
    Schulze, Britta
    Stiglmayr, Michael
    Paquete, Luis
    Fonseca, Carlos M.
    Willems, David
    Ruzika, Stefan
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 92 (01) : 107 - 132
  • [5] An FPTAS for the parametric knapsack problem
    Holzhauser, Michael
    Krumke, Sven O.
    INFORMATION PROCESSING LETTERS, 2017, 126 : 43 - 47
  • [6] Approximation of the Quadratic Knapsack Problem
    Taylor, Richard
    OPERATIONS RESEARCH LETTERS, 2016, 44 (04) : 495 - 497
  • [7] Approximation of the Quadratic Knapsack Problem
    Pferschy, Ulrich
    Schauer, Joachim
    INFORMS JOURNAL ON COMPUTING, 2016, 28 (02) : 308 - 318
  • [8] Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications
    Kellerer, Hans
    Strusevich, Vitaly A.
    ALGORITHMICA, 2010, 57 (04) : 769 - 795
  • [9] Approximation schemes for knapsack problems with shelf divisions
    Xavier, EC
    Miyazawa, FK
    THEORETICAL COMPUTER SCIENCE, 2006, 352 (1-3) : 71 - 84
  • [10] Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications
    Hans Kellerer
    Vitaly A. Strusevich
    Algorithmica, 2010, 57 : 769 - 795