Pruning processes and a new characterization of convex geometries

被引:3
|
作者
Ardila, Federico [1 ]
Maneva, Elitza [2 ]
机构
[1] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
[2] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
基金
美国国家科学基金会;
关键词
Antimatroid; Convex geometry; k-SAT; Pruning process; Removal process; SATISFIABILITY;
D O I
10.1016/j.disc.2008.08.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a new characterization of convex geometries via a multivariate version of an identity that was originally proved, in a special case arising from the k-SAT problem, by Maneva, Mossel and Wainwright. We thus highlight the connection between various characterizations of convex geometries and a family of removal processes studied in the literature on random structures. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3083 / 3091
页数:9
相关论文
共 50 条
  • [31] Some properties of the core on convex geometries
    Yoshio Okamoto
    Mathematical Methods of Operations Research, 2003, 56 : 377 - 386
  • [32] Some properties of the core on convex geometries
    Okamoto, Y
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2003, 56 (03) : 377 - 386
  • [33] Impartial achievement games on convex geometries
    McCoy, Stephanie
    Sieben, Nandor
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 98
  • [34] Choice functions and abstract convex geometries
    Koshevoy, GA
    MATHEMATICAL SOCIAL SCIENCES, 1999, 38 (01) : 35 - 44
  • [35] ALMOST CONVEX GROUPS AND THE 8 GEOMETRIES
    SHAPIRO, M
    STEIN, M
    GEOMETRIAE DEDICATA, 1995, 55 (02) : 125 - 140
  • [36] Fast Convex Pruning of Deep Neural Networks
    Aghasi, Alireza
    Abdi, Afshin
    Romberg, Justin
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (01): : 158 - 188
  • [37] Convex object Yee cell model building based on convex geometries
    Gong, Yanjun
    Wu, Zhensen
    Dai, Zhenhong
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2007, 47 (09): : 1521 - 1525
  • [38] A NEW CHARACTERIZATION OF CONVEX PLATES OF CONSTANT WIDTH
    MAKAI, E
    MARTINI, H
    GEOMETRIAE DEDICATA, 1990, 34 (02) : 199 - 209
  • [39] Chromatic numbers of copoint graphs of convex geometries
    Beagley, Jonathan E.
    Morris, Walter
    DISCRETE MATHEMATICS, 2014, 331 : 151 - 157
  • [40] A Factorization Theorem of Characteristic Polynomials of Convex Geometries
    M. Hachimori
    M. Nakamura
    Annals of Combinatorics, 2007, 11 : 39 - 46