Pruning processes and a new characterization of convex geometries

被引:3
|
作者
Ardila, Federico [1 ]
Maneva, Elitza [2 ]
机构
[1] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
[2] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
基金
美国国家科学基金会;
关键词
Antimatroid; Convex geometry; k-SAT; Pruning process; Removal process; SATISFIABILITY;
D O I
10.1016/j.disc.2008.08.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a new characterization of convex geometries via a multivariate version of an identity that was originally proved, in a special case arising from the k-SAT problem, by Maneva, Mossel and Wainwright. We thus highlight the connection between various characterizations of convex geometries and a family of removal processes studied in the literature on random structures. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:3083 / 3091
页数:9
相关论文
共 50 条