Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem

被引:9
作者
Guibe, Olivier [1 ]
Mokrane, A. [2 ]
Tahraoui, Y. [2 ]
Vallet, G. [3 ]
机构
[1] UMR 6085 CNRS, Lab Math Raphael Salem, Av Univ,BP 12, F-76801 St Etienne Du Rouvray, France
[2] Ecole Normale Super, Lab Equat Derivees Partielles Non Lineaires & His, BP 92, Vieux Kouba 16050, Alger, Algeria
[3] UMR CNRS 5142, Lab Math & Applicat Pau, BP1155, F-64013 Pau, France
关键词
Variational inequalities; penalization; pseudomonotone operator; Lewy-Stampacchia's inequality; VARIATIONAL-INEQUALITIES; EQUATIONS;
D O I
10.1515/anona-2020-0015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this paper is to extend to the case of a pseudomonotone operator Lewy-Stampacchia's inequality proposed by F. Donati [7] in the framework of monotone operators. For that, an ad hoc type of perturbation of the operator is proposed.
引用
收藏
页码:591 / 612
页数:22
相关论文
共 27 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]  
[Anonymous], COLLECTION PAPERS EH
[3]  
[Anonymous], 1987, N HOLLAND MATH STUDI
[4]   DOUBLY NONLINEAR EQUATION [J].
BAMBERGER, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (02) :148-155
[5]  
BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
[6]  
Boccardo L., 1984, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V11, P213
[7]  
Brezis H., 1973, OPERATEURS MAXIMAUX, V5
[8]  
Carl S, 2014, ADV NONLINEAR STUD, V14, P631
[10]  
Droniou J., 2007, INEGALITE NECAS QUEL