Moving beyond flexible to stretchable conductive electrodes using metal nanowires and graphenes

被引:67
作者
Lee, Hanleem [1 ,2 ]
Kim, Ikjoon [3 ]
Kim, Meeree [3 ]
Lee, Hyoyoung [1 ,2 ,3 ]
机构
[1] Sungkyunkwan Univ, Inst Basic Sci, Ctr Integrated Nanostruct Phys, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea
[3] Sungkyunkwan Univ, Dept Chem, Suwon 440746, South Korea
关键词
CHEMICAL-VAPOR-DEPOSITION; LIGHT-EMITTING-DIODES; ONE-DIMENSIONAL NANOSTRUCTURES; SOLUTION-PROCESSABLE GRAPHENE; HIGH-PERFORMANCE; REDUCED GRAPHENE; LARGE-AREA; HIGHLY TRANSPARENT; SILVER NANOWIRES; WORK-FUNCTION;
D O I
10.1039/c5nr06851g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stretchable and/or flexible electrodes and their associated electronic devices have attracted great interest because of their possible applications in high-end technologies such as lightweight, large area, wearable, and biointegrated devices. In particular, metal nanowires and graphene derivatives are chosen for electrodes because they show low resistance and high mechanical stability. Here, we review stretchable and flexible soft electrodes by discussing in depth the intrinsic properties of metal NWs and graphenes that are driven by their dimensionality. We investigate these properties with respect to electronics, optics, and mechanics from a chemistry perspective and discuss currently unsolved issues, such as how to maintain high conductivity and simultaneous high mechanical stability. Possible applications of stretchable and/or flexible electrodes using these nanodimensional materials are summarized at the end of this review.
引用
收藏
页码:1789 / 1822
页数:34
相关论文
共 301 条
[1]   A semiconductor-nanowire assembly of ultrahigh junction density by the Langmuir-Blodgett technique [J].
Acharya, S ;
Panda, AB ;
Belman, N ;
Efrima, S ;
Golan, Y .
ADVANCED MATERIALS, 2006, 18 (02) :210-+
[2]   Stretchable electronics: materials, architectures and integrations [J].
Ahn, Jong-Hyun ;
Je, Jung Ho .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (10)
[3]   Copper Nanowire-Graphene Core-Shell Nanostructure for Highly Stable Transparent Conducting Electrodes [J].
Ahn, Yumi ;
Jeong, Youngjun ;
Lee, Donghwa ;
Lee, Youngu .
ACS NANO, 2015, 9 (03) :3125-3133
[4]   Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide [J].
Ahn, Yumi ;
Jeong, Youngjun ;
Lee, Youngu .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :6410-6414
[5]   Reversibly Stretchable Transparent Conductive Coatings of Spray-Deposited Silver Nanowires [J].
Akter, Tahmina ;
Kim, Woo Soo .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (04) :1855-1859
[6]   Direct Printing of Reduced Graphene Oxide on Planar or Highly Curved Surfaces with High Resolutions Using Electrohydrodynamics [J].
An, Byeong Wan ;
Kim, Kukjoo ;
Kim, Mijung ;
Kim, So-Yun ;
Hur, Seung-Hyun ;
Park, Jang-Ung .
SMALL, 2015, 11 (19) :2263-2268
[7]   Stretchable and Transparent Electrodes using Hybrid Structures of Graphene-Metal Nanotrough Networks with High Performances and Ultimate Uniformity [J].
An, Byeong Wan ;
Hyun, Byung Gwan ;
Kim, So-Yun ;
Kim, Minji ;
Lee, Mi-Sun ;
Lee, Kyongsoo ;
Koo, Jae Bon ;
Chu, Hye Yong ;
Bae, Byeong-Soo ;
Park, Jang-Ung .
NANO LETTERS, 2014, 14 (11) :6322-6328
[8]   The electronic properties of graphene and carbon nanotubes [J].
Ando, Tsuneya .
NPG ASIA MATERIALS, 2009, 1 (01) :17-21
[9]  
[Anonymous], 2009, SOL ENERGY MAT SOL C
[10]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]