Collinear orbital antiferromagnetic order and magnetoelectricity in quasi-two-dimensional itinerant-electron paramagnets, ferromagnets, and antiferromagnets

被引:8
作者
Winkler, R. [1 ,2 ,3 ,4 ,5 ]
Zuelicke, U. [1 ,2 ,6 ,7 ,8 ]
机构
[1] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[2] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Mat Sci & Engn, Urbana, IL 61801 USA
[5] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[6] Victoria Univ Wellington, Sch Chem & Phys Sci, POB 600, Wellington 6140, New Zealand
[7] Victoria Univ Wellington, MacDiarmid Inst Adv Mat & Nanotechnol, POB 600, Wellington 6140, New Zealand
[8] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 04期
关键词
MAGNETIC SYMMETRY; BAND-STRUCTURE; FIELD CONTROL; QUANTUM-WELL; SUSCEPTIBILITY; TRANSITION; SYSTEMS;
D O I
10.1103/PhysRevResearch.2.043060
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a comprehensive quantitative theory for magnetoelectricity in magnetically ordered quasi-twodimensional (quasi-2D) systems whereby in thermal equilibrium an electric field can induce a magnetization and a magnetic field can induce an electric polarization. This effect requires that both space-inversion and time-reversal symmetry are broken. Antiferromagnetic order plays a central role in this theory. We define a Neel operator tau such that a nonzero expectation value <tau > signals collinear antiferromagnetic order in the same way a magnetization signals ferromagnetic order. While a magnetization is even under space inversion and odd under time reversal, the operator t describes a toroidal moment that is odd both under space inversion and under time reversal. Thus the magnetization and the toroidal moment <tau > quantify complementary aspects of collinear magnetic order in solids. Focusing on quasi-2D systems, itinerant-electron ferromagnetic order can be attributed to dipolar equilibrium currents that give rise to a magnetization. In the same way, antiferromagnetic order arises from quadrupolar equilibrium currents that generate the toroidal moment <tau >. In the magnetoelectric effect, the electric-field-induced magnetization can then be attributed to the electric manipulation of the quadrupolar equilibrium currents. We develop a k center dot p envelope-function theory for the antiferromagnetic diamond structure that allows us to derive explicit expressions for the Neel operator t. Considering ferromagnetic zincblende structures and antiferromagnetic diamond structures, we derive quantitative expressions for the magnetoelectric responses due to electric and magnetic fields that reveal explicitly the inherent duality of these responses required by thermodynamics. Magnetoelectricity is found to be small in realistic calculations for quasi-2D electron systems. The magnetoelectric response of quasi-2D hole systems turns out to be sizable, however, with moderate electric fields being able to induce a magnetic moment of one Bohr magneton per charge carrier. Our theory provides a broad framework for the manipulation of magnetic order by means of external fields.
引用
收藏
页数:30
相关论文
共 119 条
[1]   MAGNETIC-PROPERTIES OF NEPTUNIUM LAVES PHASES - NPMN2, NPFE2, NPCO2, AND NPNI2 [J].
ALDRED, AT ;
DUNLAP, BD ;
LAM, DJ ;
LANDER, GH ;
MUELLER, MH ;
NOWIK, I .
PHYSICAL REVIEW B, 1975, 11 (01) :530-544
[2]  
Amos R. D., 1987, Ab Initio Methods in Quantum Chemistry, V1, P99
[3]  
[Anonymous], 1992, Numerical Recipes in C: The Art of Scientific Computing
[4]  
[Anonymous], 2005, Multipole Theory in Electromagnetism
[5]  
[Anonymous], 1964, Selected Topics in Solid State Physics
[6]  
Aronov A. G., 1991, Soviet Physics - JETP, V73, P537
[7]  
ARTAMONOV YA, 1985, ZH EKSP TEOR FIZ+, V89, P1078
[8]   HIGHER-ORDER MAGNETO-ELECTRIC EFFECTS [J].
ASCHER, E .
PHILOSOPHICAL MAGAZINE, 1968, 17 (145) :149-&
[9]   Spintronics [J].
Bader, S. D. ;
Parkin, S. S. P. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :71-88
[10]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)