A simple characterization of generalized Robertson-Walker spacetimes

被引:187
作者
Chen, Bang-Yen [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
Generalized Robertson-Walker spacetime; Robertson-Walker spacetime; Timelike concircular vector field; Lorentzian warped product; CURVATURE; GEOMETRY;
D O I
10.1007/s10714-014-1833-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A generalized Robertson-Walker spacetime is the warped product with base an open interval of the real line endowed with the opposite of its metric and base any Riemannian manifold. The family of generalized Robertson-Walker spacetimes widely extends the one of classical Robertson-Walker spacetimes. Further, generalized Robertson-Walker spacetimes appear as a privileged class of inhomogeneous spacetimes admitting an isotropic radiation. In this section we prove a very simple characterization of generalized Robertson-Walker spacetimes; namely, a Lorentzian manifold is a generalized Robertson-Walker spacetime if and only if it admits a timelike concircular vector field.
引用
收藏
页数:5
相关论文
共 17 条
[1]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[2]   On the rigidity of complete spacelike hypersurfaces immersed in a generalized Robertson-Walker spacetime [J].
Alias, Luis J. ;
Colares, Antonio Gervasio ;
de Lima, Henrique F. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02) :195-217
[3]   UPPER AND LOWER BOUNDS FOR THE VOLUME OF A COMPACT SPACELIKE HYPERSURFACE IN A GENERALIZED ROBERTSON-WALKER SPACETIME [J].
Angel Aledo, Juan ;
Romero, Alfonso ;
Rubio, Rafael M. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (01)
[4]  
[Anonymous], 2014, Total Mean Curvature and Submanifolds of Finite Type
[5]  
[Anonymous], 2011, Pseudo-Riemannian geometry, [delta]-invariants and applications
[6]   Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector field [J].
Caballero, Magdalena ;
Romero, Alfonso ;
Rubio, Rafael M. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (14)
[7]  
Deszcz R., 1999, Tsukuba J. Math., V23, P113
[8]   Conformal geodesics [J].
Fialkow, Aaron .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1939, 45 (1-3) :443-473
[9]   INTERNAL CHARACTERIZATION OF DISTORTED PRODUCTS [J].
HIEPKO, S .
MATHEMATISCHE ANNALEN, 1979, 241 (03) :209-215
[10]  
Oneill Barrett, 1983, Pure and Applied Mathematics