On Regularity of Weak Solutions to a Generalized Voigt Model of Viscoelasticity

被引:4
作者
Zvyagin, V. G. [1 ]
Orlov, V. P. [1 ]
机构
[1] Voronezh State Univ, Voronezh 394018, Russia
基金
俄罗斯科学基金会;
关键词
viscoelastic medium; equations of motion; initial-boundary value problem; weak solution; Voigt viscoelasticity model; fractional derivative; SOLVABILITY; DYNAMICS;
D O I
10.1134/S0965542520110159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence and uniqueness of a strong solution to the initial-boundary value problem for a system of fluid dynamics equations that is a fractional analogue of the Voigt viscoelasticity model in the plane case are established. The rheological equation of this model involves fractional derivatives.
引用
收藏
页码:1872 / 1888
页数:17
相关论文
共 30 条
[1]  
[Anonymous], 1975, Integral equations: a reference text
[2]  
[Anonymous], 1993, INTEGRALS DERIVATIVE
[3]  
Dmitrienko V. T., 2004, RUSS MATH, V48, P21
[4]  
Gyarmati I., 1970, NONEQUILIBRIUM THERM
[5]  
Ladyzhenskaya O. A., 1968, URALTSEVA LINEAR QUA
[6]  
Ladyzhenskaya O. A., 1969, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, V2
[7]   Creep, relaxation and viscosity properties for basic fractional models in rheology [J].
Mainardi, F. ;
Spada, G. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :133-160
[8]   RHEOLOGICAL MODEL OF VISCOELASTIC BODY WITH MEMORY AND DIFFERENTIAL EQUATIONS OF FRACTIONAL OSCILLATOR [J].
Ogorodnikov, E. N. ;
Radchenko, V. P. ;
Yashagin, N. S. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (01) :255-268
[9]  
Orlov V. O., 1991, DIFFER INTEGRAL EQU, V4, P103
[10]   On the strong solutions of a regularized model of a nonlinear visco-elastic medium [J].
Orlov, V. P. .
MATHEMATICAL NOTES, 2008, 84 (1-2) :224-238