The asymptotic normality of the linear weighted estimator in nonparametric regression models

被引:3
作者
Shen, Aiting [1 ]
Ning, Mingming [1 ]
Wu, Caoqing [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic normality; Linear weighted estimator; Nonparametric regression model; rho-mixing random variables; DEPENDENT RANDOM-VARIABLES; FIXED-DESIGN REGRESSION; COMPLETE CONVERGENCE; PARTIAL-SUMS; SEQUENCES; ARRAYS;
D O I
10.1080/03610926.2018.1429633
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the following nonparametric regression model:where x(ni) are known fixed design points from for some positive integer d > 1, g( center dot ) is an unknown regression function defined on A and epsilon(ni) are random errors. Under some suitable conditions, the asymptotic normality of the linear weighted estimator of g in the nonparametric regression model based on rho-mixing errors is established. The key techniques used in the paper are the Rosenthal type inequality and the Bernstein's bigblock and small-block procedure. The result obtained in the paper generalizes the corresponding ones for some dependent sequences.
引用
收藏
页码:1367 / 1376
页数:10
相关论文
共 33 条
[1]   On moments of the maximum of normed partial sums of ρ-mixing random variables [J].
Chen Pingyan ;
Gan Shixin .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (10) :1215-1221
[2]   The Berry-Esseen bounds of wavelet estimator for regression model whose errors form a linear process with a ρ-mixing [J].
Ding, Liwang ;
Li, Yongming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[3]  
DOBRUSHIN RL, 1956, THEORY PROBAB APPL, V1, P72
[4]   NONPARAMETRIC FUNCTION RECOVERING FROM NOISY OBSERVATIONS [J].
GEORGIEV, AA ;
GREBLICKI, W .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1986, 13 (01) :1-14
[5]   CONSISTENT NONPARAMETRIC MULTIPLE-REGRESSION - THE FIXED DESIGN CASE [J].
GEORGIEV, AA .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 25 (01) :100-110
[6]   Fixed-design regression for linear time series [J].
Hu, SH ;
Zhu, CH ;
Chen, YB ;
Wang, LC .
ACTA MATHEMATICA SCIENTIA, 2002, 22 (01) :9-18
[7]  
Ibragimov I., 1962, Theory Probab Appl, V7, P349, DOI 10.1137/1107036
[8]  
Kolmogorov A.N., 1960, Theory of Probability Its Applications, V5, P204
[9]   Some inequalities for a LNQD sequence with applications [J].
Li, Yongming ;
Guo, Jianhua ;
Li, Naiyi .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[10]   Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences [J].
Liang, HY ;
Jing, BY .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (02) :227-245