Hopf Bifurcation and Hidden Attractors of a Delay-Coupled Duffing Oscillator

被引:6
作者
Zhao, Huitao [1 ]
Lin, Yiping
Dai, Yunxian
机构
[1] Zhoukou Normal Univ, Coll Math & Stat, Zhoukou 466001, Henan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 12期
基金
中国国家自然科学基金;
关键词
Delay-coupled Duffing oscillator; Hopf bifurcation; hidden attractor; CHAOTIC SYSTEM; MULTISTABILITY; FLOWS; STABILITY;
D O I
10.1142/S021812741550162X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a delay-coupled Duffing equation is studied. By the characteristic roots technique, sufficient conditions are obtained for Hopf bifurcation occurrence. And the spatio-temporal patterns of the bifurcating periodic solutions are also obtained, some examples are given to demonstrate the theoretical analysis. Especially, the obtained numerical simulation results show that there are hidden attractors in this delayed system, which can coexist with stable equilibrium or stable bifurcating orbits.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Stability and bifurcation analysis in the delay-coupled van der Pol oscillators [J].
Zhang, Jianming ;
Gu, Xinsheng .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (09) :2291-2299
[22]   Bifurcation Analysis and Spatiotemporal Patterns in Unidirectionally Delay-Coupled Vibratory Gyroscopes [J].
Li, Li ;
Xu, Jian .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (02)
[23]   Stochastic switching in delay-coupled oscillators [J].
D'Huys, Otti ;
Juengling, Thomas ;
Kinzel, Wolfgang .
PHYSICAL REVIEW E, 2014, 90 (03)
[24]   STABILITY AND HOPF BIFURCATION ANALYSIS IN COUPLED LIMIT CYCLE OSCILLATORS WITH TIME DELAY [J].
Li, Yanqiu ;
Wang, Hongbin ;
Jiang, Weihua .
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2010, 6 (04) :1823-1832
[25]   Amplitude death in networks of delay-coupled delay oscillators [J].
Hoefener, Johannes M. ;
Sethia, Gautam C. ;
Gross, Thilo .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1999)
[26]   Hopf bifurcation and chaos in an inertial neuron system with coupled delay [J].
JuHong Ge ;
Jian Xu .
Science China Technological Sciences, 2013, 56 :2299-2309
[27]   Hopf bifurcation and chaos in an inertial neuron system with coupled delay [J].
GE JuHong ;
XU Jian .
Science China(Technological Sciences), 2013, 56 (09) :2299-2309
[28]   Hopf bifurcation and chaos in an inertial neuron system with coupled delay [J].
Ge JuHong ;
Xu Jian .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (09) :2299-2309
[29]   Stability and Hopf bifurcation for two advertising systems, coupled with delay [J].
Sterpu, Nfihaela ;
Rosoreanu, Carmen .
Numerical Analysis and Applied Mathematics, 2007, 936 :535-538
[30]   On Hopf bifurcation and control for a delay systems [J].
Jiang, Xiaowei ;
Chen, Xiangyong ;
Chi, Ming ;
Chen, Jie .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 370