Hopf Bifurcation and Hidden Attractors of a Delay-Coupled Duffing Oscillator

被引:6
作者
Zhao, Huitao [1 ]
Lin, Yiping
Dai, Yunxian
机构
[1] Zhoukou Normal Univ, Coll Math & Stat, Zhoukou 466001, Henan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 12期
基金
中国国家自然科学基金;
关键词
Delay-coupled Duffing oscillator; Hopf bifurcation; hidden attractor; CHAOTIC SYSTEM; MULTISTABILITY; FLOWS; STABILITY;
D O I
10.1142/S021812741550162X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a delay-coupled Duffing equation is studied. By the characteristic roots technique, sufficient conditions are obtained for Hopf bifurcation occurrence. And the spatio-temporal patterns of the bifurcating periodic solutions are also obtained, some examples are given to demonstrate the theoretical analysis. Especially, the obtained numerical simulation results show that there are hidden attractors in this delayed system, which can coexist with stable equilibrium or stable bifurcating orbits.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits [J].
Bragin, V. O. ;
Vagaitsev, V. I. ;
Kuznetsov, N. V. ;
Leonov, G. A. .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2011, 50 (04) :511-543
[2]   Complicated basins and the phenomenon of amplitude death in coupled hidden attractors [J].
Chaudhuri, Ushnish ;
Prasad, Awadhesh .
PHYSICS LETTERS A, 2014, 378 (09) :713-718
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]   CANONICAL REALIZATION OF CHUA CIRCUIT FAMILY [J].
CHUA, LO ;
LIN, GN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (07) :885-902
[5]   Feedback control of bursting and multistability in chaotic systems [J].
Geltrude, Andrea ;
Al Naimee, Kais ;
Euzzor, Stefano ;
Meucci, Riccardo ;
Arecchi, Fortunato Tito ;
Goswami, Binoy Krishna .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) :3031-3039
[6]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
[7]   Delay-dependent multistability in recurrent neural networks [J].
Huang, Gan ;
Cao, Jinde .
NEURAL NETWORKS, 2010, 23 (02) :201-209
[8]   Simple chaotic flows with a line equilibrium [J].
Jafari, Sajad ;
Sprott, J. C. .
CHAOS SOLITONS & FRACTALS, 2013, 57 :79-84
[9]   Elementary quadratic chaotic flows with no equilibria [J].
Jafari, Sajad ;
Sprott, J. C. ;
Golpayegani, S. Mohammad Reza Hashemi .
PHYSICS LETTERS A, 2013, 377 (09) :699-702
[10]   Bifurcation and chaos in neural excitable system [J].
Jing, ZJ ;
Yang, JP ;
Feng, W .
CHAOS SOLITONS & FRACTALS, 2006, 27 (01) :197-215