WEIBEL INSTABILITY AND ASSOCIATED STRONG FIELDS IN A FULLY THREE-DIMENSIONAL SIMULATION OF A RELATIVISTIC SHOCK

被引:93
作者
Nishikawa, K. -I. [1 ]
Niemiec, J. [2 ]
Hardee, P. E. [3 ]
Medvedev, M. [4 ]
Sol, H. [5 ]
Mizuno, Y. [1 ]
Zhang, B. [6 ]
Pohl, M. [7 ]
Oka, M. [1 ]
Hartmann, D. H. [8 ]
机构
[1] Univ Alabama, NSSTC, Ctr Space Plasma & Aeronom Res, Huntsville, AL 35805 USA
[2] Inst Nucl Phys PAN, PL-31342 Krakow, Poland
[3] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[4] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[5] Observ Paris, LUTH, F-92195 Meudon, France
[6] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA
[7] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[8] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
关键词
acceleration of particles; galaxies: jets; gamma rays: bursts; magnetic fields; plasmas; shock waves; MAGNETIC-FIELD; COLLISIONLESS SHOCKS; PARTICLE-ACCELERATION; REVERSE SHOCK; COSMIC-RAYS; PLASMA; GENERATION; TURBULENCE; UPSTREAM; EMISSION;
D O I
10.1088/0004-637X/698/1/L10
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Plasma instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new three-dimensional relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. The simulation has been performed using a long simulation system in order to study the nonlinear stages of the Weibel instability, the particle acceleration mechanism, and the shock structure. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of less than or similar to 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. We discuss the possible implication of our simulation results within the active galactic nuclei and gamma-ray burst context.
引用
收藏
页码:L10 / L13
页数:4
相关论文
共 25 条
[1]  
BLANDFORD RD, 1976, PHYS FLUIDS, V19, P1130, DOI 10.1063/1.861619
[2]   Long-term evolution of magnetic turbulence in relativistic collisionless shocks: Electron-positron plasmas [J].
Chang, Philip ;
Spitkovsky, Anatoly ;
Arons, Jonathan .
ASTROPHYSICAL JOURNAL, 2008, 674 (01) :378-387
[3]   The formation of a relativistic partially electromagnetic planar plasma shock [J].
Dieckmann, M. E. ;
Shukla, P. K. ;
Drury, L. O. C. .
ASTROPHYSICAL JOURNAL, 2008, 675 (01) :586-595
[4]   Magnetic field generation in collisionless shocks:: Pattern growth and transport [J].
Frederiksen, JT ;
Hededal, CB ;
Haugbolle, T ;
Nordlund, Å .
ASTROPHYSICAL JOURNAL, 2004, 608 (01) :L13-L16
[5]   Non-Fermi power-law acceleration in astrophysical plasma shocks [J].
Hededal, CB ;
Haugbolle, T ;
Frederiksen, JT ;
Nordlund, Å .
ASTROPHYSICAL JOURNAL, 2004, 617 (02) :L107-L110
[6]   The influence of an ambient magnetic field on relativistic collisionless plasma shocks [J].
Hededal, CB ;
Nishikawa, KI .
ASTROPHYSICAL JOURNAL, 2005, 623 (02) :L89-L92
[7]   Ultrarelativistic plasma shell collisions in γ-ray burst sources:: Dimensional effects on the final steady state magnetic field [J].
Jaroschek, CH ;
Lesch, H ;
Treumann, RA .
ASTROPHYSICAL JOURNAL, 2005, 618 (02) :822-831
[8]   ION DYNAMICS AND ACCELERATION IN RELATIVISTIC SHOCKS [J].
Martins, S. F. ;
Fonseca, R. A. ;
Silva, L. O. ;
Mori, W. B. .
ASTROPHYSICAL JOURNAL LETTERS, 2009, 695 (02) :L189-L193
[9]   Reverse shock emission as a probe of gamma-ray burst ejecta [J].
McMahon, E ;
Kumar, P ;
Piran, T .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 366 (02) :575-585
[10]   MAGNETIC FIELDS AND COSMIC RAYS IN GRBs: A SELF-SIMILAR COLLISIONLESS FORESHOCK [J].
Medvedev, Mikhail V. ;
Zakutnyaya, Olga V. .
ASTROPHYSICAL JOURNAL, 2009, 696 (02) :2269-2274