Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making

被引:114
|
作者
Li, Yuqiang [1 ,2 ]
Liao, Shengming [1 ]
Liu, Gang [1 ]
机构
[1] Cent S Univ, Sch Energy Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
关键词
Solar-dish Brayton system; Multi-objective optimization; NSGA-II; Decision making; RENEWABLE ENERGY-SYSTEMS; STIRLING HEAT ENGINE; ECOLOGICAL OPTIMIZATION; EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHM; POWER; DESIGN; EFFICIENCY; DRIVEN; FEASIBILITY;
D O I
10.1016/j.ijepes.2014.07.027
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 100 kW regenerative Brayton heat engine driven by the hybrid of fossil fuel and solar energy was considered for optimization based on multiple criteria. A thermodynamic model of such hybrid system was developed so that the power output, thermal efficiency and dimensionless thermo-economic performance with the imperfect performance of parabolic dish solar collector, the external irreversibility of Brayton heat engine and conductive thermal bridging loss could be obtained. Evolutionary algorithm based on NSGA-II (Elitist Non-dominated Sorting Genetic Algorithm) was employed to optimize triple-objective and dual-objective functions, where the temperatures of hot reservoir, cold reservoir and working fluid, the effectiveness of hot-side heat exchanger, cold-side heat exchanger and regenerator were considered as design variables. Using decision makings, including Shannon Entropy, LINMAP and TOPSIS methods, the final optimal solutions were selected from Pareto frontier obtained by NSGA-II. The results show that there exists an appropriate working fluid temperature to cause optimal solution under each given condition. The comparisons of triple-objective and dual-objective optimization with single-objective optimization indicate that multi-objective optimization can yield the more suitable results due to the lower deviation index from the ideal solution. In the analysis of triple-objective optimization, an expected result is obtained that the optimal values of the power out, efficiency and dimensionless thermo-economic performance of solar-dish Brayton system (68.65 kW, 0.2331 and 0.3077) are 22.6%, 34.9% and 18.4% respectively less than that of convectional Brayton heat engine. Finally, a range of functional relationship between the optimized objectives in Pareto frontier is fitted to provide more detailed insight into the optimal design of solar-dish Brayton system. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:167 / 175
页数:9
相关论文
共 50 条
  • [21] Multi-objective optimization of a 2-stage spur gearbox using NSGA-II and decision-making methods
    Edmund S. Maputi
    Rajesh Arora
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [22] A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-II
    Xiao, Wu
    Cheng, Andi
    Li, Shuai
    Jiang, Xiaobin
    Ruan, Xuehua
    He, Gaohong
    ENERGY, 2021, 232 (232)
  • [23] Multi-objective materialized view selection using NSGA-II
    Prakash, Jay
    Kumar, T. V. Vijay
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2020, 11 (05) : 972 - 984
  • [24] Multi-objective optimization of a turbomachinery blade using NSGA-II
    Samad, Abdus
    Kim, Kwang-Yong
    Lee, Ki-Sang
    FEDSM 2007: PROCEEDINGS OF THE 5TH JOINT ASME/JSME FLUIDS ENGINEERING SUMMER CONFERENCE, VOL 2, PTS A AND B, 2007, : 885 - 891
  • [25] Thermo-economic multi-objective optimisation of a solar cooling system
    Barac, A.
    Zivic, M.
    Virag, Z.
    Vujanovic, M.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 202
  • [26] A comprehensive survey on NSGA-II for multi-objective optimization and applications
    Haiping Ma
    Yajing Zhang
    Shengyi Sun
    Ting Liu
    Yu Shan
    Artificial Intelligence Review, 2023, 56 : 15217 - 15270
  • [27] A comprehensive survey on NSGA-II for multi-objective optimization and applications
    Ma, Haiping
    Zhang, Yajing
    Sun, Shengyi
    Liu, Ting
    Shan, Yu
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (12) : 15217 - 15270
  • [28] Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS
    Lin, Yi-Kuei
    Yeh, Cheng-Ta
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 218 (03) : 735 - 746
  • [29] Multi-objective optimization of controllable configurations for bistable laminates using NSGA-II
    Zhang, Zheng
    Liao, Chongjie
    Chai, Hao
    Ni, Xiangqi
    Pei, Kai
    Sun, Min
    Wu, Huaping
    Jiang, Shaofei
    COMPOSITE STRUCTURES, 2021, 266
  • [30] Multi-objective optimization of FCC separation system based on NSGA-II
    Liu, Yingjie
    Chu, Menghao
    Ye, Qing
    Li, Jinlong
    Han, Deqiu
    CHEMICAL ENGINEERING SCIENCE, 2025, 302