High-performance hybrid electrochemical capacitor with binder- free Nb2O5@ graphene

被引:73
作者
Wang, Luyuan Paul [1 ,2 ]
Yu, Linghui [1 ]
Satish, Rohit [1 ]
Zhu, Jixin [1 ]
Yan, Qingyu [1 ]
Srinivasan, Madhavi [1 ,2 ]
Xu, Zhichuan [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Interdisciplinary Grad Sch, ERI N, Energy Res Inst NTU, Singapore 639798, Singapore
来源
RSC ADVANCES | 2014年 / 4卷 / 70期
基金
新加坡国家研究基金会;
关键词
LI STORAGE; ENERGY-STORAGE; ION BATTERIES; SUPERCAPACITOR; ELECTRODES; OXIDE; CHALLENGES; HOST;
D O I
10.1039/c4ra06674j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hybrid electrochemical capacitors (HECs) are capable of storing more energy than supercapacitors while providing more power compared to lithium-ion batteries (LIBs). The development of Li-intercalating materials is critical to organic electrolyte based HECs, which generally give larger potential output than aqueous electrolyte based HECs. This article reports on a simple binder-free Nb2O5@graphene composite that exhibited excellent HEC performance as compared with other Li intercalating electrode materials. The composite exhibited enhanced cyclability with a capacity retention of 91.2% compared to 74.4% of the pure Nb2O5 half-cell when tested at a rate of 2000 mA g(-1) (10 C). The composite displayed a lower polarization effect when cycled at increasing scan rates (1-10 mV s(-1)). The enhanced rate capability could be ascribed to the use of a highly conductive graphene support. As a result, the HEC composed of the Nb2O5@graphene composite and activated carbon (AC) delivered a maximum energy and power density of 29 W h kg(-1) and 2.9 kW kg(-1). The performance is better than most reported HECs with other Li-intercalating electrode materials.
引用
收藏
页码:37389 / 37394
页数:6
相关论文
共 50 条
  • [31] Surfactant-Free Synthesis of Nb2O5 Nanoparticles Anchored Graphene Nanocomposites with Enhanced Electrochemical Performance for Supercapacitor Electrodes
    Nagaraju, P.
    Vasudevan, R.
    Alsalme, A.
    Alghamdi, A.
    Arivanandhan, M.
    Jayavel, R.
    NANOMATERIALS, 2020, 10 (01)
  • [32] Facile hybridization of graphene oxide and Cu2O for high-performance electrochemical supercapacitors
    Park, Hun
    Han, Tae Hee
    MACROMOLECULAR RESEARCH, 2014, 22 (08) : 809 - 812
  • [33] Functional binder for high-performance Li-O2 batteries
    Cui, Yanming
    Wen, Zhaoyin
    Lu, Yan
    Wu, Meifen
    Liang, Xiao
    Jin, Jun
    JOURNAL OF POWER SOURCES, 2013, 244 : 614 - 619
  • [34] Nb2O5 Nanoparticles Anchored on an N-Doped Graphene Hybrid Anode for a Sodium-Ion Capacitor with High Energy Density
    She, Liaona
    Iran, Zhe
    Kang, Liping
    He, Xuexia
    Lei, Zhibin
    Shi, Feng
    Xu, Hua
    Sun, Jie
    Liu, Zong-Huai
    ACS OMEGA, 2018, 3 (11): : 15943 - 15951
  • [35] Nb2O5 microstructures: a high-performance anode for lithium ion batteries
    Liu, Sainan
    Zhou, Jiang
    Cai, Zhenyang
    Fang, Guozhao
    Pan, Anqiang
    Liang, Shuquan
    NANOTECHNOLOGY, 2016, 27 (46)
  • [36] Synthesis of high-performance Li4Ti5O12 and its application to the asymmetric hybrid capacitor
    Lee, Byunggwan
    Yoon, Jung Rag
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (06) : 871 - 873
  • [37] Electrophoretic deposition of hierarchical Co3O4@graphene hybrid films as binder-free anodes for high-performance lithium-ion batteries
    Wu, Xiaoyu
    Wang, Bo
    Li, Songmei
    Liu, Jianhua
    Yu, Mei
    RSC ADVANCES, 2015, 5 (42): : 33438 - 33444
  • [38] Growth of polyaniline thorns on hybrid electrospun CNFs with nickel nanoparticles and graphene nanosheets as binder-free electrodes for high-performance supercapacitors
    Tian, Di
    Lu, Xiaofeng
    Nie, Guangdi
    Gao, Mu
    Song, Na
    Wang, Ce
    APPLIED SURFACE SCIENCE, 2018, 458 : 389 - 396
  • [39] A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide
    Li, Yingru
    Sheng, Kaixuan
    Yuan, Wenjing
    Shi, Gaoquan
    CHEMICAL COMMUNICATIONS, 2013, 49 (03) : 291 - 293
  • [40] Vertically Oriented Cu2+1O@Cu-MOFs Hybrid Clusters for High-Performance Electrochemical Capacitors
    Zheng, Kun
    Tan, Hua
    Wang, Lihua
    Liu, Jingquan
    Ding, Meichun
    Jia, Dedong
    ADVANCED MATERIALS INTERFACES, 2021, 8 (10)