On a characterization theorem for the group of p-adic numbers

被引:15
|
作者
Feldman, Gennadiy [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2015年 / 87卷 / 1-2期
关键词
linear forms; conditional distribution; group of p-adic numbers; DISCRETE ABELIAN-GROUPS; HEYDE THEOREM;
D O I
10.5486/PMD.2015.7100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known Heyde's characterization of the Gaussian distribution on the real line: Let, xi(1), xi(2), ..., xi(n), n >= 2, be independent random variables, alpha(j), beta(j) be nonzero constants such that beta(i)alpha(-1)(i) + beta(j)alpha(-1)(j) not equal 0 for all i not equal j. If the conditional distribution of the linear form L-2 = beta(1)xi(1) + beta(2)xi(2) + ... + beta(n)xi(n) given L-1 = alpha(1)xi(1) + alpha(2)xi(2) + ... + alpha(n)xi(n) is symmetric, then all random variables xi(j) are Gaussian. We prove an analogue of this theorem for two independent random variables in the case when they take values in the group of p-adic numbers Omega(p), and coefficients of linear forms are topological automorphisms of Omega(p),.
引用
收藏
页码:147 / 166
页数:20
相关论文
共 50 条
  • [41] ON EXPRESSIBLE SETS AND p-ADIC NUMBERS
    Hancl, Jaroslav
    Nair, Radhakrishnan
    Pulcerova, Simona
    Sustek, Jan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 411 - 422
  • [42] Approximation lattices of p-adic numbers
    deSmedt, S
    P-ADIC FUNCTIONAL ANALYSIS, 1997, 192 : 375 - 382
  • [43] On p-adic T-numbers
    Pejkovic, Tomislav
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4): : 549 - 567
  • [44] ON THE p-ADIC SECOND MAIN THEOREM
    Levin, Aaron
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (02) : 633 - 640
  • [45] P ≠ NC over the p-adic numbers
    Maller, M
    Whitehead, J
    JOURNAL OF COMPLEXITY, 2003, 19 (02) : 125 - 131
  • [46] A derivative on the field of p-adic numbers
    Avdispahić M.
    Memić N.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2010, 2 (4) : 278 - 284
  • [47] On the heights of totally p-adic numbers
    Fili, Paul
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (01): : 103 - 109
  • [48] The p-adic law of large numbers
    Zelenov, E. I.
    IZVESTIYA MATHEMATICS, 2016, 80 (03) : 489 - 499
  • [49] A p-adic local monodromy theorem
    Kedlaya, KS
    ANNALS OF MATHEMATICS, 2004, 160 (01) : 93 - 184
  • [50] Some Problems in the Theory of Approximation of Functions on the Group of p-Adic Numbers
    Platonov S.S.
    p-Adic Numbers, Ultrametric Analysis and Applications, 2018, 10 (2) : 118 - 129