On a characterization theorem for the group of p-adic numbers

被引:15
|
作者
Feldman, Gennadiy [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2015年 / 87卷 / 1-2期
关键词
linear forms; conditional distribution; group of p-adic numbers; DISCRETE ABELIAN-GROUPS; HEYDE THEOREM;
D O I
10.5486/PMD.2015.7100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known Heyde's characterization of the Gaussian distribution on the real line: Let, xi(1), xi(2), ..., xi(n), n >= 2, be independent random variables, alpha(j), beta(j) be nonzero constants such that beta(i)alpha(-1)(i) + beta(j)alpha(-1)(j) not equal 0 for all i not equal j. If the conditional distribution of the linear form L-2 = beta(1)xi(1) + beta(2)xi(2) + ... + beta(n)xi(n) given L-1 = alpha(1)xi(1) + alpha(2)xi(2) + ... + alpha(n)xi(n) is symmetric, then all random variables xi(j) are Gaussian. We prove an analogue of this theorem for two independent random variables in the case when they take values in the group of p-adic numbers Omega(p), and coefficients of linear forms are topological automorphisms of Omega(p),.
引用
收藏
页码:147 / 166
页数:20
相关论文
共 50 条
  • [31] On a geometrical representation of p-adic numbers
    Mahler, K
    ANNALS OF MATHEMATICS, 1940, 41 : 8 - 56
  • [32] FERMIONS ON THE FIELD OF P-ADIC NUMBERS
    UBRIACO, MR
    PHYSICAL REVIEW D, 1990, 41 (08): : 2631 - 2633
  • [33] ALGEBRAIC INDEPENDENCE OF P-ADIC NUMBERS
    BUNDSCHUH, P
    WALLISSER, R
    MATHEMATISCHE ANNALEN, 1976, 221 (03) : 243 - 249
  • [34] P-ADIC ANALYSIS AND BELL NUMBERS
    BARSKY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (22): : 1257 - 1259
  • [35] On a p-adic invariant cycles theorem
    Chiarellotto, Bruno
    Coleman, Robert
    Di Proietto, Valentina
    Iovita, Adrian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 711 : 55 - 74
  • [36] A Kunneth theorem for p-adic groups
    Raghuram, A.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2007, 50 (03): : 440 - 446
  • [37] TRANSCENDENTAL NUMBERS IN P-ADIC DOMAIN
    ADAMS, WW
    AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (02) : 279 - &
  • [38] A univalent formalization of the p-adic numbers
    Pelayo, Alvaro
    Voevodsky, Vladimir
    Warren, Michael A.
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2015, 25 (05) : 1147 - 1171
  • [39] Quantum mechanics on p-adic numbers
    Vourdas, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (45)
  • [40] A p-ADIC SECOND MAIN THEOREM
    Huynh, Dinh tuan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (03) : 1231 - 1238