On a characterization theorem for the group of p-adic numbers

被引:15
|
作者
Feldman, Gennadiy [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2015年 / 87卷 / 1-2期
关键词
linear forms; conditional distribution; group of p-adic numbers; DISCRETE ABELIAN-GROUPS; HEYDE THEOREM;
D O I
10.5486/PMD.2015.7100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known Heyde's characterization of the Gaussian distribution on the real line: Let, xi(1), xi(2), ..., xi(n), n >= 2, be independent random variables, alpha(j), beta(j) be nonzero constants such that beta(i)alpha(-1)(i) + beta(j)alpha(-1)(j) not equal 0 for all i not equal j. If the conditional distribution of the linear form L-2 = beta(1)xi(1) + beta(2)xi(2) + ... + beta(n)xi(n) given L-1 = alpha(1)xi(1) + alpha(2)xi(2) + ... + alpha(n)xi(n) is symmetric, then all random variables xi(j) are Gaussian. We prove an analogue of this theorem for two independent random variables in the case when they take values in the group of p-adic numbers Omega(p), and coefficients of linear forms are topological automorphisms of Omega(p),.
引用
收藏
页码:147 / 166
页数:20
相关论文
共 50 条
  • [21] Geometry of P-adic numbers.
    Monna, AF
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1942, 45 (6/10): : 981 - 986
  • [22] Bernoulli numbers in p-adic analysis
    Kim, MS
    Son, JW
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) : 289 - 297
  • [23] P-ADIC ANALYSIS AND BERNOULLI NUMBERS
    BARSKY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (16): : 1069 - 1072
  • [24] Relaxed algorithms for p-adic numbers
    Berthomieu, Jeremy
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (03): : 541 - 577
  • [25] Algebraic independence of p-adic numbers
    Nesterenko, Yu. V.
    IZVESTIYA MATHEMATICS, 2008, 72 (03) : 565 - 579
  • [26] On p-adic valuations of Stirling numbers
    Miska, Piotr
    ACTA ARITHMETICA, 2018, 186 (04) : 337 - 348
  • [27] The p-adic Valuation of the ASM Numbers
    Beyerstedt, Erin
    Moll, Victor H.
    Sun, Xinyu
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (08)
  • [28] Heights and totally p-adic numbers
    Pottmeyer, Lukas
    ACTA ARITHMETICA, 2015, 171 (03) : 277 - 291
  • [29] P-ADIC TRANSCENDENTAL-NUMBERS
    NISHIOKA, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (01) : 39 - 41
  • [30] On the p-adic valuation of harmonic numbers
    Sanna, Carlo
    JOURNAL OF NUMBER THEORY, 2016, 166 : 41 - 46