On a characterization theorem for the group of p-adic numbers

被引:15
作者
Feldman, Gennadiy [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2015年 / 87卷 / 1-2期
关键词
linear forms; conditional distribution; group of p-adic numbers; DISCRETE ABELIAN-GROUPS; HEYDE THEOREM;
D O I
10.5486/PMD.2015.7100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known Heyde's characterization of the Gaussian distribution on the real line: Let, xi(1), xi(2), ..., xi(n), n >= 2, be independent random variables, alpha(j), beta(j) be nonzero constants such that beta(i)alpha(-1)(i) + beta(j)alpha(-1)(j) not equal 0 for all i not equal j. If the conditional distribution of the linear form L-2 = beta(1)xi(1) + beta(2)xi(2) + ... + beta(n)xi(n) given L-1 = alpha(1)xi(1) + alpha(2)xi(2) + ... + alpha(n)xi(n) is symmetric, then all random variables xi(j) are Gaussian. We prove an analogue of this theorem for two independent random variables in the case when they take values in the group of p-adic numbers Omega(p), and coefficients of linear forms are topological automorphisms of Omega(p),.
引用
收藏
页码:147 / 166
页数:20
相关论文
共 33 条