On a characterization theorem for the group of p-adic numbers

被引:15
|
作者
Feldman, Gennadiy [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2015年 / 87卷 / 1-2期
关键词
linear forms; conditional distribution; group of p-adic numbers; DISCRETE ABELIAN-GROUPS; HEYDE THEOREM;
D O I
10.5486/PMD.2015.7100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known Heyde's characterization of the Gaussian distribution on the real line: Let, xi(1), xi(2), ..., xi(n), n >= 2, be independent random variables, alpha(j), beta(j) be nonzero constants such that beta(i)alpha(-1)(i) + beta(j)alpha(-1)(j) not equal 0 for all i not equal j. If the conditional distribution of the linear form L-2 = beta(1)xi(1) + beta(2)xi(2) + ... + beta(n)xi(n) given L-1 = alpha(1)xi(1) + alpha(2)xi(2) + ... + alpha(n)xi(n) is symmetric, then all random variables xi(j) are Gaussian. We prove an analogue of this theorem for two independent random variables in the case when they take values in the group of p-adic numbers Omega(p), and coefficients of linear forms are topological automorphisms of Omega(p),.
引用
收藏
页码:147 / 166
页数:20
相关论文
共 50 条
  • [1] The Heyde theorem on the group of p-adic numbers
    G. M. Feldman
    Doklady Mathematics, 2014, 89 : 359 - 361
  • [2] The Heyde theorem on the group of p-adic numbers
    Feldman, G. M.
    DOKLADY MATHEMATICS, 2014, 89 (03) : 359 - 361
  • [3] On the Skitovich-Darmois Theorem for the Group of p-Adic Numbers
    Feldman, Gennadiy
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (02) : 539 - 549
  • [4] An analogue of the Titchmarsh theorem for the Fourier transform on the group of p-adic numbers
    Platonov S.S.
    p-Adic Numbers, Ultrametric Analysis and Applications, 2017, 9 (2) : 158 - 164
  • [5] On approximation of p-adic numbers by p-adic algebraic numbers
    Beresnevich, VV
    Bernik, VI
    Kovalevskaya, EI
    JOURNAL OF NUMBER THEORY, 2005, 111 (01) : 33 - 56
  • [6] On Geary's theorem for the field of p-adic numbers
    Myronyuk, M. V.
    Feldman, G. M.
    DOKLADY MATHEMATICS, 2016, 93 (02) : 152 - 154
  • [7] On Geary’s theorem for the field of p-adic numbers
    M. V. Myronyuk
    G. M. Feldman
    Doklady Mathematics, 2016, 93 : 152 - 154
  • [8] p-adic analog of the Turrittin theorem and the theorem of p-adic monodromy
    Mebkhout, Z
    INVENTIONES MATHEMATICAE, 2002, 148 (02) : 319 - 351
  • [9] P-ADIC NUMBERS
    BARSKY, D
    CHRISTOL, G
    RECHERCHE, 1995, 26 (278): : 766 - 771
  • [10] P-ADIC NUMBERS IN PHYSICS
    BREKKE, L
    FREUND, PGO
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 233 (01): : 1 - 66