A PROBABILISTIC INTERPRETATION OF GEOMETRIC ACTIVE CONTOUR SEGMENTATION

被引:0
|
作者
De Vylder, Jonas [1 ]
Van Haerenborgh, Dirk [1 ]
Aelterman, Jan [1 ]
Philips, Wilfried [1 ]
机构
[1] Univ Ghent, iMinds Image Proc & Interpretat, Dept Telecommun & Informat Proc, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
来源
2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2014年
关键词
Active contours; segmentation; convex optimization; statistical estimator; IMAGE SEGMENTATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Active contours or snakes are widely used for segmentation and tracking. These techniques require the minimization of an energy function, which is typically a linear combination of a data-fit term and regularization terms. This energy function can be tailored to the intrinsic object and image features. This can be done by either modifying the actual terms or by changing the weighting parameters of the terms. There is, however, no sure way to set these terms and weighting parameters optimally for a given application. Although heuristic techniques exist for parameter estimation, often trial and error is used. In this paper, we propose a probabilistic interpretation to segmentation. This approach results in a generalization of state of the art active contour segmentation. In the proposed framework all parameters have a statistical interpretation, thus avoiding ad hoc parameter settings.
引用
收藏
页码:1302 / 1306
页数:5
相关论文
共 50 条
  • [1] Dual geometric active contour for image segmentation
    Zhu, Guopu
    Zeng, Qingshuang
    Wang, Changhong
    OPTICAL ENGINEERING, 2006, 45 (08)
  • [2] A Fuzzy Geometric Active Contour Method for Image Segmentation
    Li, Danyi
    Li, Weifeng
    Liao, Qingmin
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (09): : 2107 - 2114
  • [3] Robust Active Contour Segmentation with an Efficient Global Optimizer
    De Vylder, Jonas
    Aelterman, Jan
    Philips, Wilfried
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, 2011, 6915 : 195 - 206
  • [4] Automated Segmentation Scheme Based on Probabilistic Method and Active Contour Model for Breast Cancer Detection
    Biswas, Biswajit
    Choudhuri, Ritamshirsa
    Dey, Kashi Nath
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND INFORMATICS (ICACNI 2015), VOL 1, 2016, 43 : 553 - 564
  • [5] 3D segmentation of medical image using the geometric active contour model
    Jang, DP
    Cho, YH
    Kim, SI
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 957 - 967
  • [6] Research of Underwater Image Segmentation Algorithm Based on the Improved Geometric Active Contour Models
    Li Shelei
    Huang Mengxing
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS), 2018, : 44 - 50
  • [7] Multigrid geometric active contour models
    Papandreou, George
    Maragos, Petros
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) : 229 - 240
  • [8] Active Contour Models for Manifold Valued Image Segmentation
    Bansal, Sumukh
    Tatu, Aditya
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 52 (02) : 303 - 314
  • [9] Active Contour Models for Manifold Valued Image Segmentation
    Sumukh Bansal
    Aditya Tatu
    Journal of Mathematical Imaging and Vision, 2015, 52 : 303 - 314
  • [10] SPATIALLY ADAPTIVE RELAXATION FOR ACTIVE CONTOUR CELL SEGMENTATION
    Ogier, A.
    Dorval, T.
    Kim, B.
    Genovesio, A.
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 1033 - 1036