Construction of a Smart Nanofluidic Sensor through a Redox Reaction Strategy for High-Performance Carbon Monoxide Sensing

被引:28
作者
Ouyang, Qingying [1 ]
Tu, Le [1 ]
Zhang, Yi [1 ,2 ]
Chen, Huan [3 ]
Fan, Yifan [1 ]
Tu, Yingfeng [4 ]
Li, Yangyan [5 ]
Sun, Yao [1 ]
机构
[1] Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticides & Chem Biol, Wuhan 430079, Peoples R China
[2] Guangdong Prov Key Lab Radioact & Rare Resource U, Shaoguan 512026, Peoples R China
[3] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Liaoning, Peoples R China
[4] Harbin Med Univ, Key Lab Myocardial Ischem, Chinese Minist Educ, Dept Cardiol,Hosp 2, Harbin 150008, Peoples R China
[5] Hunan Univ Sci & Engn, Coll Chem & Bioengn, Yongzhou 425199, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROOSMOTIC FLOW; MOLECULAR-TRANSPORT; CONFINED SPACES; NITRIC-OXIDE; SINGLE; NANOPORES; RECTIFICATION; SELECTIVITY; FABRICATION; IONS;
D O I
10.1021/acs.analchem.0c02424
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Carbon monoxide (CO), an important gas signaling molecule, demonstrated various physiological and pathological functions by regulating the ion flux of biological channels. Herein, inspired by the CO-regulated K+ channel in vivo, we propose a smart CO-responsive nanosensor through the redox reaction strategy. Such nanosensor demonstrated an outstanding CO specificity and selectivity with high ion rectification (similar to 9) as well as excellent stability and recyclability. Therefore, these results will provide a new direction for the design of nanochannel-based sensors for future practical and biological applications.
引用
收藏
页码:14947 / 14952
页数:6
相关论文
共 61 条
[1]   Imaging molecular transport in porous membranes. Observation and analysis of electroosmotic flow in individual pores using the scanning electrochemical microscope [J].
Bath, BD ;
Lee, RD ;
White, HS ;
Scott, ER .
ANALYTICAL CHEMISTRY, 1998, 70 (06) :1047-1058
[2]   Electrically facilitated molecular transport. Analysis of the relative contributions of diffusion, migration, and electroosmosis to solute transport in an ion-exchange membrane [J].
Bath, BD ;
White, HS ;
Scott, ER .
ANALYTICAL CHEMISTRY, 2000, 72 (03) :433-442
[3]   Electroosmotic Flow Rectification in Membranes with Asymmetrically Shaped Pores: Effects of Current and Pore Density [J].
Bishop, Gregory W. ;
Lopez, Marcos M., Jr. ;
Rajasekaran, Pradeep Rarniah ;
Wu, Xiaojian ;
Martin, Charles R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (29) :16633-16638
[4]   Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis [J].
Cao, Chan ;
Long, Yi-Tao .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (02) :331-341
[5]   Asymmetric selectivity of synthetic conical nanopores probed by reversal potential measurements [J].
Cervera, J. ;
Alcaraz, A. ;
Schiedt, B. ;
Neumann, R. ;
Ramirez, P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (33) :12265-12273
[6]   Fabrication of a Smart Nanofluidic Biosensor through a Reversible Covalent Bond Strategy for High-Efficiency Bisulfite Sensing and Removal [J].
Chen, Huan ;
Xu, Liying ;
Tuo, Wei ;
Chen, Xiaoya ;
Huang, Jinmei ;
Zhang, Xin ;
Sun, Yao .
ANALYTICAL CHEMISTRY, 2020, 92 (05) :4131-4136
[7]   Controllable synthetic ion channels [J].
Chen, Jian-Yu ;
Hou, Jun-Li .
ORGANIC CHEMISTRY FRONTIERS, 2018, 5 (10) :1728-1736
[8]   Recent advances in one-dimensional assembly of nanoparticles [J].
Chen, Linfeng ;
Su, Bin ;
Jiang, Lei .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (01) :8-21
[9]  
DAWSON TM, 1994, J NEUROSCI, V14, P5147
[10]   Biomolecule-Functionalized Solid-State Ion Nanochannels/Nanopores: Features and Techniques [J].
Ding, Defang ;
Gao, Pengcheng ;
Ma, Qun ;
Wang, Dagui ;
Xia, Fan .
SMALL, 2019, 15 (32)