Bayesian Analysis of Realized Matrix-Exponential GARCH Models

被引:5
|
作者
Asai, Manabu [1 ]
McAleer, Michael [2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Soka Univ, Fac Econ, Hachioji, Tokyo, Japan
[2] Asia Univ, Dept Finance, Taichung, Taiwan
[3] Univ Sydney, Discipline Business Analyt, Business Sch, Sydney, NSW, Australia
[4] Erasmus Univ, Erasmus Sch Econ, Econometr Inst, Rotterdam, Netherlands
[5] Univ Complutense Madrid, Dept Econ Anal, Madrid, Spain
[6] Univ Complutense Madrid, ICAE, Madrid, Spain
[7] Yokohama Natl Univ, Inst Adv Sci, Yokohama, Kanagawa, Japan
基金
澳大利亚研究理事会; 日本学术振兴会;
关键词
Multivariate GARCH; Realized measure; Matrix-exponential; Bayesian Markov chain Monte Carlo method; Asymmetry; CONDITIONAL HETEROSKEDASTICITY; MULTIVARIATE; INFERENCE; VOLATILITY; IMPACT; ARCH;
D O I
10.1007/s10614-020-10074-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study develops a new realized matrix-exponential GARCH (MEGARCH) model, which uses the information of returns and realized measure of co-volatility matrix simultaneously. An alternative multivariate asymmetric function to develop news impact curves is also considered. We consider Bayesian Markov chain Monte Carlo estimation to allow non-normal posterior distributions and illustrate the usefulness of the algorithm with numerical simulations for two assets. We compare the realized MEGARCH models with existing multivariate GARCH class models for three US financial assets. The empirical results indicate that the realized MEGARCH models outperform the other models regarding out-of-sample performance. The news impact curves based on the posterior densities provide reasonable results.
引用
收藏
页码:103 / 123
页数:21
相关论文
共 50 条
  • [21] Empirical performance of the optimal predictors under asymmetric loss GARCH vs. realized GARCH models
    Ulu, Yasemin
    APPLIED ECONOMICS, 2024,
  • [22] Fast estimation of matrix exponential spatial models
    Ye Yang
    Osman Doğan
    Süleyman Taşpınar
    Journal of Spatial Econometrics, 2021, 2 (1):
  • [23] Bayesian inference of multivariate-GARCH-BEKK models
    Livingston, G. C. Jr Jr
    Nur, Darfiana
    STATISTICAL PAPERS, 2023, 64 (05) : 1749 - 1774
  • [24] Bayesian estimation of smoothly mixing time-varying parameter GARCH models
    Chen, Cathy W. S.
    Gerlach, Richard
    Lin, Edward M. H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 76 : 194 - 209
  • [25] Bayesian inference in spatial GARCH models: an application to US house price returns
    Dogan, Osman
    Taspinar, Suleyman
    SPATIAL ECONOMIC ANALYSIS, 2023, 18 (03) : 410 - 428
  • [26] Quasi-maximum exponential likelihood estimation for double-threshold GARCH models
    Zhang, Tongwei
    Wang, Dehui
    Yang, Kai
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1152 - 1178
  • [27] Bayesian case influence analysis for GARCH models based on Kullback-Leibler divergence
    Hao, Hong-Xia
    Lin, Jin-Guan
    Wang, Hong-Xia
    Huang, Xing-Fang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (04) : 595 - 609
  • [28] Bayesian analysis of some models that use the asymmetric exponential power distribution
    Naranjo, L.
    Perez, C. J.
    Martin, J.
    STATISTICS AND COMPUTING, 2015, 25 (03) : 497 - 514
  • [29] Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models
    Bauwens, Luc
    Otranto, Edoardo
    JOURNAL OF FINANCIAL ECONOMETRICS, 2023, 21 (04) : 1376 - 1401
  • [30] Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo
    Li, Dan
    Clements, Adam
    Drovandi, Christopher
    ECONOMETRICS AND STATISTICS, 2021, 19 : 22 - 46