Extremal Kahler-Einstein Metric for Two-Dimensional Convex Bodies

被引:2
|
作者
Klartag, Bo'az [1 ,2 ]
Kolesnikov, Alexander V. [3 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Natl Res Univ Higher Sch Econ, Fac Math, Moscow 119048, Russia
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Monge-Ampere equation; Kahler-Einstein equation; Ricci tensors;
D O I
10.1007/s12220-018-0077-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a convex body K Rn with the barycenter at the origin, we consider the corresponding Kahler-Einstein equation e-phi=detD2 phi. If K is a simplex, then the Ricci tensor of the Hessian metric D2 phi is constant and equals . We conjecture that the Ricci tensor of D2 phi for an arbitrary convex body KRn is uniformly bounded from above by and we verify this conjecture in the two-dimensional case. The general case remains open.
引用
收藏
页码:2347 / 2373
页数:27
相关论文
共 50 条