Extremal Kahler-Einstein Metric for Two-Dimensional Convex Bodies

被引:2
|
作者
Klartag, Bo'az [1 ,2 ]
Kolesnikov, Alexander V. [3 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Natl Res Univ Higher Sch Econ, Fac Math, Moscow 119048, Russia
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Monge-Ampere equation; Kahler-Einstein equation; Ricci tensors;
D O I
10.1007/s12220-018-0077-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a convex body K Rn with the barycenter at the origin, we consider the corresponding Kahler-Einstein equation e-phi=detD2 phi. If K is a simplex, then the Ricci tensor of the Hessian metric D2 phi is constant and equals . We conjecture that the Ricci tensor of D2 phi for an arbitrary convex body KRn is uniformly bounded from above by and we verify this conjecture in the two-dimensional case. The general case remains open.
引用
收藏
页码:2347 / 2373
页数:27
相关论文
共 50 条
  • [21] Convex bodies with equiframed two-dimensional sections
    Nico Düvelmeyer
    Archiv der Mathematik, 2007, 88 : 181 - 192
  • [22] VOLUME ESTIMATES FOR KAHLER-EINSTEIN METRICS: THE THREE-DIMENSIONAL CASE
    Chen, X. -X.
    Donaldson, S. K.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2013, 93 (02) : 175 - 189
  • [23] COMPLETENESS OF THE KAHLER-EINSTEIN METRIC ON BOUNDED DOMAINS AND THE CHARACTERIZATION OF DOMAINS OF HOLOMORPHY BY CURVATURE CONDITIONS
    MOK, NM
    YAU, ST
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 39 : 41 - 59
  • [24] Degenerating Kahler-Einstein cones, locally symmetric cusps, and the Tian-Yau metric
    Biquard, Olivier
    Guenancia, Henri
    INVENTIONES MATHEMATICAE, 2022, 230 (03) : 1101 - 1163
  • [25] Kahler-Einstein metrics on Pasquier's two-orbits varieties
    Kanemitsu, Akihiro
    MANUSCRIPTA MATHEMATICA, 2022, 169 (1-2) : 297 - 311
  • [26] The complete Kahler-Einstein metric on a type of quasi-homogeneous Forelli-Rudin structure
    Chen, Mingming
    Wang, An
    Zhao, Xin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [27] On the extremal distance between two convex bodies
    C. Hugo Jiménez
    Márton Naszódi
    Israel Journal of Mathematics, 2011, 183 : 103 - 115
  • [28] On the extremal distance between two convex bodies
    Jimenez, C. Hugo
    Naszodi, Marton
    ISRAEL JOURNAL OF MATHEMATICS, 2011, 183 (01) : 103 - 115
  • [29] 2-dimensional Kahler-Einstein metrics induced by finite dimensional complex projective spaces
    Manno, Gianni
    Sails, Filippo
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 420 - 432
  • [30] Orientation dynamics of two-dimensional concavo-convex bodies
    Ravichandran, S.
    Wettlaufer, J. S.
    PHYSICAL REVIEW FLUIDS, 2023, 8 (06)