Explicit algorithms to solve a class of state constrained parabolic optimal control problems

被引:8
作者
Lapin, Alexander [1 ]
Laitinen, Erkki [2 ]
Lapin, Sergey [3 ]
机构
[1] Kazan Fed Univ, Kazan 420008, Russia
[2] Univ Oulu, Oulu 90014, Finland
[3] Washington State Univ, Pullman, WA 99164 USA
关键词
Optimal control; finite difference method; constrained saddle point problem; iterative method; FINITE-ELEMENT APPROXIMATION; ELLIPTIC CONTROL-PROBLEMS; GRADIENT; REGULARIZATION; EQUATIONS;
D O I
10.1515/rnam-2015-0032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an optimal control problem of a system governed by a linear parabolic equation with the following features: control is distributed, observation is either distributed or final, there are constraints on the state function and on its time derivative. Iterative solution methods are proposed and investigated for the finite difference approximations of these optimal control problems. Due to explicit in time approximation of the state equation and the appropriate choice of the preconditioners in the iterative methods, the implementation of all constructed methods is carried out by explicit formulae. Computational experiments confirm the theoretical results.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 28 条
[11]   A SEMI-SMOOTH NEWTON METHOD FOR SOLVING ELLIPTIC EQUATIONS WITH GRADIENT CONSTRAINTS [J].
Griesse, Roland ;
Kunisch, Karl .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :209-238
[12]   Controlling transport phenomena in the Czochralski crystal growth process [J].
Gunzburger, M ;
Ozugurlu, E ;
Turner, J ;
Zhang, H .
JOURNAL OF CRYSTAL GROWTH, 2002, 234 (01) :47-62
[13]   WEAK-DUALITY BASED ADAPTIVE FINITE ELEMENT METHODS FOR PDE-CONSTRAINED OPTIMIZATION WITH POINTWISE GRADIENT STATE-CONSTRAINTS [J].
Hintermueller, M. ;
Hinze, Michael ;
Hoppe, Ronald H. W. .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (02) :101-123
[14]   MOREAU-YOSIDA REGULARIZATION IN STATE CONSTRAINED ELLIPTIC CONTROL PROBLEMS: ERROR ESTIMATES AND PARAMETER ADJUSTMENT [J].
Hintermueller, Michael ;
Hinze, Michael .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :1666-1683
[15]   Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment [J].
Hinze, Michael ;
Schiela, Anton .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 48 (03) :581-600
[16]   Efficiently implementable iterative methods for linear elliptic variational inequalities with constraints on the gradient of solution [J].
Kashtanov N.S. ;
Lapin A.V. .
Russian Mathematics, 2015, 59 (7) :7-20
[17]   Iterative Solution Methods for Variational Inequalities with Nonlinear Main Operator and Constraints to Gradient of Solution [J].
Laitinen, E. ;
Lapin, A. ;
Lapin, S. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2012, 33 (04) :341-352
[18]  
Laitinen E., 2010, Computational Methods in Applied Mathematics, V10, P283
[19]  
Laitinen E., 2012, APPL MATH, V3, P1862
[20]  
Laitinen E., 2013, COMP METH APPL SCI, V27, P19