Trajectory Prediction using Conditional Generative Adversarial Network

被引:0
作者
Barbie, Thibault [1 ]
Nishida, Takeshi [1 ]
机构
[1] Kyushu Inst Technol, Tobata Ku, 1-1 Sensui Cho, Kitakyushu, Fukuoka, Japan
来源
PROCEEDINGS OF THE 2017 INTERNATIONAL SEMINAR ON ARTIFICIAL INTELLIGENCE, NETWORKING AND INFORMATION TECHNOLOGY (ANIT 2017) | 2017年 / 150卷
关键词
Trajectory prediction; generative model; conditional generative adversarial networks;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimization based planners (OBP) use a linear initialization as a prior of their optimizations which fails to use already acquired knowledge. Most of the time the linear initialization will collide with obstacles which will be the most difficult part of the OBP to optimize. We propose a method to perform trajectory prediction that leverages motion dataset by using a conditional generative adversarial network. Unlike previous methods, our proposed method does not require the dataset during execution time but instead generate new trajectories. We demonstrate the validity of our method on simulation. Our method decreases by 20% the number of colliding trajectories predicted compared to the linear initialization while being very fast.
引用
收藏
页码:193 / 197
页数:5
相关论文
共 9 条
[1]  
Berenson D, 2012, IEEE INT CONF ROBOT, P3671, DOI 10.1109/ICRA.2012.6224742
[2]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[3]  
Hauser Kris, ROBOTICS CHALLENGES
[4]   Fast motion planning from experience: trajectory prediction for speeding up movement generation [J].
Jetchev, Nikolay ;
Toussaint, Marc .
AUTONOMOUS ROBOTS, 2013, 34 (1-2) :111-127
[5]  
Kuffner J. J. Jr., 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P995, DOI 10.1109/ROBOT.2000.844730
[6]  
Mirza M, 2014, ARXIV PREPRINT ARXIV
[7]  
Radford A., 2016, ICLR
[8]   The Open Motion Planning Library [J].
Sucan, Ioan A. ;
Moll, Mark ;
Kavraki, Lydia E. .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2012, 19 (04) :72-82
[9]  
Tokui S., 2015, P WORKSH MACH LEARN, V5, P1