Anomalous behaviors in fractional Fokker-Planck equation

被引:0
|
作者
Kim, K [1 ]
Kong, YS
机构
[1] Pukyong Natl Univ, Dept Phys, Pusan 608737, South Korea
[2] Pukyong Natl Univ, Sch Ocean Engn, Pusan 608737, South Korea
关键词
fractional; Fokker-Planck equation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a fractional Fokker-Planck equation with a temporal power-law dependence on the drift force fields. For this case, the moments of the tracer from the force-force correlation in terms of the time-dependent drift force fields are discussed analytically. The long-time asymptotic behavior of the second moment is determined by the scaling exponent imposed by the drift force fields. In the special case of the space scaling value nu = 1 and the time scaling value 7 = 1, our result can be classified according to the temporal scaling of the mean second moment of the tracer for large t: <<(x(2)(t))over bar>> proportional to t with xi = 1/4 for normal diffusion, and <<(x(2)(t))over bar>> proportional to t(eta) with eta > 1 and xi > 1/4 for superdiffusion.
引用
收藏
页码:979 / 982
页数:4
相关论文
共 50 条
  • [41] Fokker-Planck equation for chemical reactions in plasmas
    Longo, Savino
    van de Sanden, Mauritius C. M.
    Diomede, Paola
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2019, 30 (01) : 25 - 30
  • [42] The Fokker-Planck equation with subcritical confinement force
    Kavian, Otared
    Mischler, Stephane
    Ndao, Mamadou
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 151 : 171 - 211
  • [43] Probability flow solution of the Fokker-Planck equation
    Boffi, Nicholas M.
    Vanden-Eijnden, Eric
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [44] Self-Consistency of the Fokker-Planck Equation
    Shen, Zebang
    Wang, Zhenfu
    Kale, Satyen
    Ribeiro, Alejandro
    Karbasi, Amin
    Hassani, Hamed
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178 : 817 - 841
  • [45] Approximation of the Fokker-Planck equation of the stochastic chemostat
    Campillo, Fabien
    Joannides, Marc
    Larramendy-Valverde, Irene
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 99 : 37 - 53
  • [46] Solution of the Fokker-Planck Equation with a Logarithmic Potential
    Dechant, A.
    Lutz, E.
    Barkai, E.
    Kessler, D. A.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (06) : 1524 - 1545
  • [47] The Fokker-Planck equation for arbitrary nonlinear noise
    Kim, S
    Park, SH
    Ryu, CS
    PHYSICS LETTERS A, 1997, 230 (5-6) : 288 - 294
  • [48] Solution of the Fokker-Planck Equation with a Logarithmic Potential
    A. Dechant
    E. Lutz
    E. Barkai
    D. A. Kessler
    Journal of Statistical Physics, 2011, 145 : 1524 - 1545
  • [49] Bilinear Optimal Control of the Fokker-Planck Equation
    Fleig, Arthur
    Guglielmi, Roberto
    IFAC PAPERSONLINE, 2016, 49 (08): : 254 - 259
  • [50] On the higher order corrections to the Fokker-Planck equation
    Plyukhin, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 351 (2-4) : 198 - 210