Anomalous behaviors in fractional Fokker-Planck equation

被引:0
|
作者
Kim, K [1 ]
Kong, YS
机构
[1] Pukyong Natl Univ, Dept Phys, Pusan 608737, South Korea
[2] Pukyong Natl Univ, Sch Ocean Engn, Pusan 608737, South Korea
关键词
fractional; Fokker-Planck equation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a fractional Fokker-Planck equation with a temporal power-law dependence on the drift force fields. For this case, the moments of the tracer from the force-force correlation in terms of the time-dependent drift force fields are discussed analytically. The long-time asymptotic behavior of the second moment is determined by the scaling exponent imposed by the drift force fields. In the special case of the space scaling value nu = 1 and the time scaling value 7 = 1, our result can be classified according to the temporal scaling of the mean second moment of the tracer for large t: <<(x(2)(t))over bar>> proportional to t with xi = 1/4 for normal diffusion, and <<(x(2)(t))over bar>> proportional to t(eta) with eta > 1 and xi > 1/4 for superdiffusion.
引用
收藏
页码:979 / 982
页数:4
相关论文
共 50 条
  • [31] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [32] FRACTIONAL FOKKER-PLANCK EQUATION WITH GENERAL CONFINEMENT FORCE
    Lafleche, Laurent
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (01) : 164 - 196
  • [33] A FOKKER-PLANCK EQUATION OF FRACTIONAL ORDER WITH RESPECT TO TIME
    JUMARIE, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) : 3536 - 3542
  • [34] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [35] Fractional (space-time) Fokker-Planck equation
    El-Wakil, SA
    Elhanbaly, A
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2001, 12 (06) : 1035 - 1040
  • [36] The operator method for solving the fractional Fokker-Planck equation
    Elwakil, SA
    Zahran, MA
    Abdou, MA
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2003, 77 (03): : 317 - 327
  • [37] Transport in the spatially tempered, fractional Fokker-Planck equation
    Kullberg, A.
    del-Castillo-Negrete, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
  • [38] Numerical solution of the space fractional Fokker-Planck equation
    Liu, F
    Anh, V
    Turner, I
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (01) : 209 - 219
  • [39] Finite difference approximations for the fractional Fokker-Planck equation
    Chen, S.
    Liu, F.
    Zhuang, P.
    Anh, V.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273
  • [40] Numerical algorithm for the time fractional Fokker-Planck equation
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 1510 - 1522