Anomalous behaviors in fractional Fokker-Planck equation

被引:0
|
作者
Kim, K [1 ]
Kong, YS
机构
[1] Pukyong Natl Univ, Dept Phys, Pusan 608737, South Korea
[2] Pukyong Natl Univ, Sch Ocean Engn, Pusan 608737, South Korea
关键词
fractional; Fokker-Planck equation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a fractional Fokker-Planck equation with a temporal power-law dependence on the drift force fields. For this case, the moments of the tracer from the force-force correlation in terms of the time-dependent drift force fields are discussed analytically. The long-time asymptotic behavior of the second moment is determined by the scaling exponent imposed by the drift force fields. In the special case of the space scaling value nu = 1 and the time scaling value 7 = 1, our result can be classified according to the temporal scaling of the mean second moment of the tracer for large t: <<(x(2)(t))over bar>> proportional to t with xi = 1/4 for normal diffusion, and <<(x(2)(t))over bar>> proportional to t(eta) with eta > 1 and xi > 1/4 for superdiffusion.
引用
收藏
页码:979 / 982
页数:4
相关论文
共 50 条
  • [31] Semimartingales from the Fokker-Planck equation
    Mikami, T
    APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 53 (02) : 209 - 219
  • [32] Semimartingales from the Fokker-Planck Equation
    Toshio Mikami
    Applied Mathematics and Optimization, 2006, 53 : 209 - 219
  • [33] CONTROL STRATEGIES FOR THE FOKKER-PLANCK EQUATION
    Breiten, Tobias
    Kunisch, Karl
    Pfeiffer, Laurent
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (02) : 741 - 763
  • [34] FOKKER-PLANCK EQUATION IN BOUNDED DOMAIN
    Chupin, Laurent
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (01) : 217 - 255
  • [35] FACTORIZATION OF THE SOLUTIONS OF THE FOKKER-PLANCK EQUATION
    Massou, S.
    Tchoffo, M.
    Moussiliou, S.
    Essoun, A.
    Beilinson, A. A.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2012, 10 (02): : 161 - 170
  • [36] GENERIC framework for the Fokker-Planck equation
    Hoyuelos, Miguel
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 : 350 - 358
  • [37] The precise time-dependent solution of the Fokker-Planck equation with anomalous diffusion
    Guo Ran
    Du Jiulin
    ANNALS OF PHYSICS, 2015, 359 : 187 - 197
  • [38] The Fokker-Planck equation and the master equation in the theory of migration
    Tabata, M
    Eshima, N
    IMA JOURNAL OF APPLIED MATHEMATICS, 2004, 69 (06) : 585 - 603
  • [39] Levy stable distribution and space-fractional Fokker-Planck type equation
    Duan, Jun-Sheng
    Chaolu, Temuer
    Wang, Zhong
    Fu, Shou-Zhong
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 17 - 20
  • [40] Fractional Fokker-Planck equation approach for the interconversion between dielectric and mechanical measurements
    Garcia-Bernabe, A.
    Sanchis, M. J.
    Diaz-Calleja, R.
    del Castillo, L. F.
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (01)