Anomalous behaviors in fractional Fokker-Planck equation

被引:0
|
作者
Kim, K [1 ]
Kong, YS
机构
[1] Pukyong Natl Univ, Dept Phys, Pusan 608737, South Korea
[2] Pukyong Natl Univ, Sch Ocean Engn, Pusan 608737, South Korea
关键词
fractional; Fokker-Planck equation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a fractional Fokker-Planck equation with a temporal power-law dependence on the drift force fields. For this case, the moments of the tracer from the force-force correlation in terms of the time-dependent drift force fields are discussed analytically. The long-time asymptotic behavior of the second moment is determined by the scaling exponent imposed by the drift force fields. In the special case of the space scaling value nu = 1 and the time scaling value 7 = 1, our result can be classified according to the temporal scaling of the mean second moment of the tracer for large t: <<(x(2)(t))over bar>> proportional to t with xi = 1/4 for normal diffusion, and <<(x(2)(t))over bar>> proportional to t(eta) with eta > 1 and xi > 1/4 for superdiffusion.
引用
收藏
页码:979 / 982
页数:4
相关论文
共 50 条
  • [21] The variational formulation of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) : 1 - 17
  • [22] The Fokker-Planck equation for a bistable potential
    Caldas, Denise
    Chahine, Jorge
    Drigo Filho, Elso
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 412 : 92 - 100
  • [23] Free energy and the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHYSICA D, 1997, 107 (2-4): : 265 - 271
  • [24] A General Solution of the Fokker-Planck Equation
    Araujo, M. T.
    Drigo Filho, E.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 146 (03) : 610 - 619
  • [25] Approximate solution for Fokker-Planck equation
    Araujo, M. T.
    Drigo Filho, E.
    CONDENSED MATTER PHYSICS, 2015, 18 (04)
  • [26] Entropy generation and the Fokker-Planck equation
    Lucia, Umberto
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 393 : 256 - 260
  • [27] The Fokker-Planck equation in estimation and control
    Lemos, Joao M.
    Girao, Joao
    Silva, Antonio S.
    Marques, Jorge S.
    IFAC PAPERSONLINE, 2019, 52 (07): : 91 - 95
  • [28] A General Solution of the Fokker-Planck Equation
    M. T. Araujo
    E. Drigo Filho
    Journal of Statistical Physics, 2012, 146 : 610 - 619
  • [29] OPTIMIZATION OF A MODEL FOKKER-PLANCK EQUATION
    Herty, Michael
    Joerres, Christian
    Sandjo, Albert N.
    KINETIC AND RELATED MODELS, 2012, 5 (03) : 485 - 503
  • [30] Derivation of the Fractional Fokker-Planck Equation for Stable Levy with Financial Applications
    Aljethi, Reem Abdullah
    Kilicman, Adem
    MATHEMATICS, 2023, 11 (05)