One explanation for the glass transition is a geometrical frustration owing to the development of nonspace-filling short-range order (icosahedral, tetrahedral). However, experimental demonstrations of this are lacking. Here, the first quantitative measurements of the time-dependent nucleation rate in a Zr59Ti3Cu20Ni8Al10 bulk metallic glass are combined with the first measurements of the evolution of the supercooled liquid structure to near the glass transition temperature to provide strong support for an icosahedral-order-based frustration model for the glass transition in Zr-based glasses.