Weak amenability for dynamical systems

被引:6
作者
McKee, Andrew [1 ,2 ,3 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[3] Univ Bialystok, Fac Math, K Ciolkowskiego 1M, PL-15245 Bialystok, Poland
基金
英国工程与自然科学研究理事会;
关键词
Schur multiplier; C*-crossed products; approximation properties; weak amenability; HERZ-SCHUR MULTIPLIERS; C-ASTERISK-ALGEBRAS; FOURIER ALGEBRA; BOUNDED MULTIPLIERS;
D O I
10.4064/sm200227-20-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the recently developed notion of a Herz-Schur multiplier of a C*-dynamical system we introduce weak amenability of C*- and W*-dynamical systems. As a special case we recover Haagerup's characterisation of weak amenability of a discrete group. We also consider a generalisation of the Fourier algebra and its multipliers to crossed products.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 18 条
[1]   The Fourier-Stieltjes algebra of a C*-dynamical system [J].
Bedos, Erik ;
Conti, Roberto .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (06)
[2]   Fourier Series and Twisted C*-Crossed Products [J].
Bedos, Erik ;
Conti, Roberto .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (01) :32-75
[3]  
BOZEJKO M, 1984, B UNIONE MAT ITAL, V3A, P297
[4]  
Brown NP., 2008, GRADUATE STUDIES MAT
[5]   COMPLETELY BOUNDED MULTIPLIERS OF THE FOURIER ALGEBRA OF A SIMPLE LIE GROUP OF REAL RANK ONE [J].
COWLING, M ;
HAAGERUP, U .
INVENTIONES MATHEMATICAE, 1989, 96 (03) :507-549
[6]   MULTIPLIERS OF THE FOURIER ALGEBRAS OF SOME SIMPLE LIE-GROUPS AND THEIR DISCRETE-SUBGROUPS [J].
DECANNIERE, J .
AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (02) :455-500
[7]   BANACH ALGEBRA STRUCTURE IN FOURIER SPACES AND GENERALIZATION OF HARMONIC-ANALYSIS ON LOCALLY COMPACT GROUPS [J].
FUJITA, M .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (01) :53-67
[8]   APPROXIMATION PROPERTIES FOR GROUP C-ASTERISK-ALGEBRAS AND GROUP VON-NEUMANN-ALGEBRAS [J].
HAAGERUP, U ;
KRAUS, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) :667-699
[9]  
Haagerup U, 2016, J LIE THEORY, V26, P861
[10]  
Knudby S., 2014, THESIS